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ABSTRACT

In this paper, we examine the pricing of European call options on

stocks which have variance rates that change randomly. We study con-

tinuous time diffusion processes for the stock return and the standard

deviation parameter, and we find that one must use the stock and two

options to form a riskless hedge. The riskless hedge does not lead to

a unique option pricing function because the random standard deviation

is not a traded security. One must appeal to an equilibrium asset

pricing model to derive a unique option pricing function. In general,

the option price depends on the risk premium associated with the random

standard deviation. We find that the problem can be simplified by

assuming that volatility risk can be diversified away and that changes

in volatility are uncorrelated with the stock return. The resulting

solution is an integral of the Black-Scholes formula and the distribu-

tion function for the variance of the stock price. We show that

accurate option prices can be computed via Monte Carlo simulations and

we apply the model to a set of actual prices.





OPTION PRICING WHEN THE VARIANCE CHANGES RANDOMLY

THEORY AND AN APPLICATION

The variance of stock, returns plays an important role in option

pricing, and it has received much attention in the empirical literature.

Some researchers have developed methods for improving the accuracy of

estimates of the variance from historical stock return data, while

others have used option prices to recover current estimates. This work

has been motivated by the observation that stock price volatility seems

to change over time and that the changes are not completely predictable.

The Black-Scholes model is frequently used to calculate implied standard

deviations (ISD) from option prices and the ISD's are allowed to vary

from one day to the next, but the underlying assumption of the model is

that stock returns are lognormally distributed with a constant variance

rate. Other models in the literature allow the variance rate to change

with some other variable such as the stock price or the underlying value

of the firm. In this paper, we consider a model in which the variance

rate or the standard deviation is allowed to vary randomly according to

an independent diffusion process, and by constructing this model we

incorporate the possibility that ISD's in option prices may change ran-

domly from one day to the next. Before we present the model, we offer

some empirical evidence which indicates that stock price volatility does

change and that there is some intertemporal dependence in the volatility.

In the empirical literature on stock return distributions, there is

much evidence supporting models in which the variance parameter changes

randomly over time. For examples, see the papers by Blattberg and

Gonedes (1974), Clark (1973), Epps and Epps (1976), and Kon (1984).
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These studies and others have treated stock returns over discrete time

intervals as subordinated processes: the stock return or the log of

one plus the stock return is normally distributed with a directing pro-

cess determining the variance each period. Blattberg and Gonedes note

that if we take Brownian motion and randomize the variance of the pro-

cess with an inverted gamma— 2 process, the resulting distribution is a

student t, which they apply to stock returns. Another approach is to

use the mixture-of-normals model in which we first randomly draw mean

and variance parameters from a set of possible parameter values and

then generate stock returns using the normal distribution with the ran-

domly drawn parameter values. In these applications, stock returns are

independent over time: the variance parameter drawn this period is

independent of the draw in any other period. In Feller's (1971, pp.

346-47) terminology, the directing process has "stationary independent

increments.

"

If we were to compute monthly standard deviations for stock returns

using daily data, we would expect the monthly estimates to be dis-

tributed randomly around the unconditional variance if the underlying

2
stock returns are independent over time. If we look at these monthly

standard deviations over time, what we see is a persistent pattern. In

Figure 1, we have plotted the monthly standard deviations for the value-

weighted return series taken from the CRSP daily file. The sample

period is July 1962 to December 1983 and the following calculation has

been made for each month:

2 1 ?1
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where u. is the sample mean of £n(l+R) for month i. In addition to the

persistent pattern in Figure 1, the standard deviations have a tendency

to return to an average level. We treat the 258 estimates of the monthly

standard deviations as a time series and compute the first order auto-

correlation coefficient. The estimate for the CRSP data is .5872.

Whether we compute the non-Neumann ratio or a t-statistic using a

-1/2
standard error of n , we shall reject the null hypothesis of serial

independence at extremely low significance levels. Similar calculations

have been made with daily returns on the S&P 500 and Digital Equipment

Corporation. The autocorrelation coefficients for the monthly standard

deviations are .6263 and .4529, respectively.

These observations indicate strong evidence of intertemporal depen-

dence in stock price volatility. This phenomena cannot be explained by

models in which stock returns are distributed independently over time,

which is the case with the class of subordinated processes which have

been frequently applied to stock returns. One possible explanation is

a diffusion process of the following form:

dP = aP dt + a P dz,

where a is itself a diffusion process driven by a second Wiener

process. In addition, one can easily incorporate a mean-reverting

tendency in the standard deviation process. The remainder of the paper

is devoted to the development of an option pricing model which incor-

porates random variation in the volatility parameter. We focus on the

valuation of European call options for non-dividend paying stocks, and
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from Merton (1973), we know that the results carry over to the corre-

sponding American call options. In Section II, we develop techniques

for estimating parameters of the variance process, and in Section III,

we apply the model to options on Digital Equipment Corporation (DEC) to

compare the performance of the random variance model with the Black-

Scholes model.

I. The Random Variance Option Pricing Model

From the observations made in the introduction, we now consider the

following stochastic process for stock prices:

dP = aPdt + aPdz

(1)

da = 8 (a-a)dt + ydz
,

where dz and dz are Wiener processes. Here we are assuming that the

standard deviation for stock prices follows a random mean-reverting

process, an Ornstein-Uhlenbeck process. If 8 equals zero, a is a ran-

dom walk and the unconditional variance for stock returns is infinite.

The a parameter is normally distributed and there is a possibility of

negative values, but the variance will be nonnegative. At the end of

this section, we derive similar results for a strictly positive process

on a. A call option on this stock will be a function of three variables

H(P,a,t), where x is time to expiration for the option. We also make

the common assumption that the riskless interest rate is constant.

We first examine this problem by forming a riskless hedge involving

the stock and options to derive a partial differential equation (P.D.E.)

which the option pricing function must satisfy. The introduction of a
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random variance produces several complications. A dynamic portfolio

with only one option and one stock is not sufficient for creating a

riskless investment strategy. The problem arises because the

stochastic differential for the option, dH, contains two sources of

uncertainty, dz and dz . In order to eliminate the uncertainty, we

require two call options plus the stock; the two call options must have

different expiration dates. This requirement does not present any dif-

ficulties because stock options trade with three expiration dates.

Jones (1984) and Eisenberg (1984) have also examined option pricing

models where at least two options are necessary to form a riskless

hedge.

We assume the existence of the option pricing function, H(P,ct,t)

and use Ito's lemma to derive the stochastic differential:

dH = [HaP + H
2
B(a-cr) " H

3
+
J Hua2p2 + H

12
5YaP

+ \ H
22

Y
2
]dt + H

]

aPdz
1

+ H
2
Ydz

2
,

(2)

where the subscripts on H indicate partial derivatives and 6 is the

instantaneous correlation between dz and dz . We form a portfolio

with the stock and two calls that have different expiration dates:

H(«,»,T
1

) + w H(»,-,t ) + w
3
P.

We set the proportions w and w so that the risk of the portfolio is

eliminated

:
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M- ,• ,T,)
1

w„ = -
2 H (-,-,t_)

H
2
(-,. ,T

1
)H

1
(-,«,T

2
)

w
3

= - y.,.,^) +
» (-,-,o

After some cancellation, the return on this portfolio is

dH(- ,• ,T.) + w
2
dH(- ,. ,t

2
) + w

3
dP

= {- fL
3
(r

± ) +Y H
ll

(T
l
)o2p2 + h

i2
(t

i
)5yoP + i H

22
(T

l
)y2

H (t )

"
hJt^T

[ -W +
I H

ll
(T

2
)o2p2 + H

12 ^2 )5YOP +
T

H
22

(T
2
)Y

2
Hdt

When we form the riskless hedge, we lose the expected return on the

stock and the expected change in the volatility parameter. Because

this portfolio has a riskless return, in equilibrium it must have a

return equal to the risk-free rate. The result is the following P.D.E.:

H (x )

"W +
I

H
ll

(T
l
)a2p2

+W 6^ P +
I

H
22

(T 1^
2

" H^ [ "W
+ j Hn (x

2
)a

2
p
2 +

H
12

(T
2
)6yaP + j H^T^y

2
] = rfHO^) + w

2
H(t

2
> + w^]

After some manipulation we have

[H
3
(T

1
} " 2

Hn (T
i
)a2p2 " H

12
(T

1
)5yaP - | H

22
(T

l

)y2 + H^T
i>

r " ^(r^Pr]

~
WJ(^T ^W " I H

ll
(T

2
)a2p2 - H

12
(T

2
)6YaP - \ H^x^ (3)

+ H(T
2
)r - H (T

2
)Pr] =
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The solution to the following P.D.E. is a solution to the P.D.E. in (3):

H
3

~ I "ll
^ 2

" H
12
6YaP " I H

22
y2 + Hr ~ H

i
Pr =

°

with the boundary condition H(P,a,0) = max{0,P-c}, where c is the exer-

cise price of the call option. But the solution to the following P.D.E.

with the same boundary conditions also solves the P.D.E. in (3):

H
3

" 1 H
li
a2p2 " H

i2
6YaP " I

H
22
y2 + Hr

- HPr - H
2
b* = 0,

where b* is arbitrary. Arbitrage is not sufficient for the determina-

tion of a unique option pricing function in this random variance model.

An alternative view of this problem is that the duplicating portfolio

for an option in this model contains the stock, the riskless bond, and

another option. We cannot determine the price of a call option without

knowing the price of another call on the same stock, but that is pre-

cisely the function that we are trying to determine.

To derive a unique option pricing function, we must rely on an

equilibrium asset pricing model. This is the approach used by Hull and

White (1986), and we apply their technique. From the stochastic dif-

ferential for the option price, we know that dH depends on two random

variables, dP and da. By applying either an intertemporal asset pricing

model or a continuous-time version of Ross's (1976, 1977) arbitrage

pricing theory, we have the following equation for the expected return

on the option:
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,dH,
H
1
P

, N

H
2 ,.E(— ) = r + -g-(a - r) + — X*,

where (a - r) is the risk premium on the stock and X* is the risk

premium associated with da. The expected return on the option is also

determined by the dt term in (2). Equating these two expressions for

the expected return, we have

-H + j a2p2Hn + 6yaPH
12

+ j Y
2
H
22

- rH + rPH

(4)

+ H
2
[B (a-a) - X*] = 0.

The P.D.E. in (A) with the boundary condition has a unique solution and

it is easy to show that this solution also satisfies the P.D.E. in (3).

The expected return on the stock does not influence the value of the

option, but in general, the expected change and the risk premium asso-

ciated with the volatility parameter do.

By applying the results in Lemma 4 of Cox, Ingersoll, and Ross

(1985), we have the following solution for the option pricing function:

H(P,a,t;r,c) = E(e~
rt

max{ ,P
t
-c} |

P

,a
Q

)

,

(5)

where E is a risk-adjusted expectation. For the risk-adjustment, we

reduce the mean parameters of dP and da by the corresponding risk premia,

For the stock return, we replace a with the risk-free rate, r. For the

standard deviation, we use [8 (a-a) - X*] in place of B(a-a). By follow-

ing Karlin and Taylor (1981, pp. 222-24), we can derive the backward

equation for the function in (5) and show that it solves the P.D.E. in

(4) with these adjustments on the dP and da processes. This result is

demonstrated in the appendix.
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The option pricing function in (5) is a general solution to this

random variance problem. To make this model operational, we need the

parameters of the a process, the risk premium X*, and the instantaneous

correlation coefficient between the stock return and da. Given these

parameters and the current value of a, one can use the Monte Carlo

simulation method described in Boyle (1977) to compute option prices.

3
The model can be simplified if X* and 6 are zero. The risk premium is

zero if the volatility risk of the stock is diversif iable (or if da is

uncorrelated with the marginal utility of wealth). If the risk premium

is zero, then the change in a should be uncorrelated with the stock

return. By contrast, if the risk premium is non-zero, then the change

in a should be correlated with the stock return. We make the following

argument. Assume that there is a market volatility factor and that the

stock's volatility is positively related to the market volatility fac-

tor. If this is true, volatility risk cannot be completely diversified

away. For the market portfolio, there is a common belief that there is

a positive relationship between the risk premium and volatility. If

there is an unexpected increase in market volatility, the risk premium

on the market portfolio rises, but at the same time the value of the

market portfolio would normally decline. We would get a drop in the

values of most stocks and this suggests a negative correlation between

stock price changes and its volatility. Our a priori reasoning suggests

a negative covariance between da and dP and a negative covariance

between da and changes in the value of the market portfolio. This

latter relationship implies a negative risk premium, X*, for a. The

significance of the parameters X* and 6 is an empirical issue that we
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do not explore in this paper. These parameters may or may not he

significant, but by setting them equal to zero we can simplify the

model and significantly reduce the costs of the Monte Carlo simula-

tions. With da uncorrelated with dP, we can use the conditional dis-

tribution of the stock return given the variance process.

We develop the distribution of the stock price at expiration with

X* = and 5=0. Applying the results on stochastic calculus in

Karlin and Taylor (pp. 368-75), we have the following solution to the

stochastic differential for stock prices:

p
t

= p exp{
-
f (r " T a

(s)
)ds + ' a

(s)
dz

i
(s)| *

Next we examine the distribution of P conditional on both P^ and the
t

path of a
,

{a } for <' s _< t. This conditional distribution is log-

normal and the expectation is

E(P
t
|P ,{%!) = P e"

Then taking the expectation of E(P |P ,{a }) over the distribution of

[a \ for <'. s < t, we get the same result and the expected return on

the stock equals the riskless return. We find the following integral
t

2
to be a useful parameter: V = f a, N ds, which is of course random.

o
(s)

Our distribution for stock prices conditional on \o } is lognormal:
s

ln(P /P
Q

) ~ N(rt - j V,V).

N'ow apply the results of Smith (1976, pp. 15-16),

e"
rt
E(max{0,P

t
-c} |P

Q
,V) = PgNCd^ - ce"

rt
N(d

2
),
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ln(P
Q
/c) + rt + 2 v

where d
n

= =
1 /v

and d
2

= d
i

" /V *

This result is essentially the Black-Scholes formula with V in place

2
of a t. To finish the problem, we need to integrate this formula over

the distribution of V. From equation (1) and the expression above, V

depends on a_, t, 8, o , and y. The resulting form of the option

pricing function is

00

H(P ,a ,t;r,c,6,or,Y) =/ [PqNC^) - ce"
rt

N(d
2

) ]dF(V; t ,a
Q
,B ,a ,y ) . (6)

This integral converges because F is a distribution function, and the

function inside the brackets is bounded given the values of P , c, r,

and t. The functions N(d ) and N(d ) are bounded by zero and one. If

we could analytically determine the density function for V, calculation

of option prices for this model would involve numerical integration of

the Black-Scholes formula, and we would call such a solution a quasi

4
closed-form. The distribution of V for the a process in (1) is quite

complicated because the integral is the sum of the squares of corre-

lated normal variates. The option pricing function involves the

expectation of a function of V, g(V), and one might be able to develop

some accurate approximations by using a function of the mean and

variance of V, which can be analytically determined.

Our approach is to compute option prices by Monte Carlo simulations.

— rt
Let g(V) = P N(d ) - ce N(d ) , and our solution is E(g(V)) taken over

the distribution of V. Given that this moment exists, as we have argued,
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one can simulate values of V and g(V) and compute the sample mean for

simulated values of g(V). As the sample size gets large, we know that

the sample mean is closing in on E(g(V)), our option price, because the

sample mean converges in probability to the expected value. An empiri-

cal question remains regarding the sample size necessary for computing

accurate option prices from the model. One advantage of our approach

is that we do not need to simulate both V and P ; we need to simulate

only V and this substantially reduces the sample size or number of

trials required for a given level of accuracy.

We have also developed the model for a lognormal process on the o

parameter, namely that lna is an Ornstein-Uhlenbeck process. The

stochastic differential for a is

12 —
da = a[— Y - B(lna - a)]dt + yodz

, (7)

where a is the mean reverting value for lna. We apply the same

approach used for the first model: we use an equilibrium asset pricing

model and set 5 and X* equal to zero. The resulting P.D.E. is

"H
3

+
I

H
li
a2p2 + 1 H

22
y2(j2 " Hr + H

!
Pr + H

2
a[T

y2 " B^ n<7- 3)1 =
° (8 >

with the same boundary condition. The solution to this P.D.E. is iden-

tical to the solution in (5), except the distribution for V is different

The integral V now involves the summation of correlated lognormal

variates, and the simulation of V must be modified appropriately.

II. Estimating the Parameters of the Variance Process

In order to compute option prices from the models in the previous

section, we need values for a n
and the parameters of the a process.
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We first consider the estimation of the parameters of the a process

from data on the stock returns. Because the volatility parameter, a„,

changes randomly, its estimation will be more difficult. A common

approach in the empirical literature on option pricing is to use actual

option prices to infer the values of a„. This approach is used in the

next section where we apply the model to a series of actual call option

prices. At the end of this section, we outline briefly two Kalman

filter models that might be used to estimate current values of a.

For the volatility process in equation (1), the fixed parameters

are 8, o , and y. One approach to estimating these parameters would be

to determine the unconditional distribution of stock returns as a func-

tion of a , 8, a, and y, and then apply the method of maximum likelihood.

The problem with the maximum likelihood estimation is that stock

returns are dependent over time in this model and the joint distribu-

tion for a sample of observations would be very difficult to derive.

Our approach is to use the method of moments to jointly estimate the

parameters of the stock return process.

Because the data on stock prices are generally available at fixed

points in time, we apply a discrete time approximation to the volatility

process. Over short time intervals, the distribution of stock returns

conditional on the volatility parameter is lognormal and we have a pro-

cess

AlnP = aAt + a Az,

where Az is N(0,At). From the Ornstein-Uhlenbeck process for a, we can

derive the following equation for a at discrete points equally spaced:
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a = e a , + a( 1-e ) + e ,

t t-1 t

where e is normal with mean zero and variance

t
2

The variance of stock returns, AlnP , over an interval is f a. .ds.f J (s)

2
For small intervals At, we use Ata, ., where s is the midpoint of the

(s)

interval. This approximation can be made as accurate as desired by

decreasing the size of the interval. Because stock returns are avail-

able on a daily basis, we use a day as our time interval and assume

that during the day the variation in a is small enough so that we may

use a discrete time first order autoregressive process for a that cor-

responds to the a process above at fixed points:

a = a + pa , + e .

t t-1 t

For stock returns we have AlnP = a + a u , where u is standard normal
t t t' t

and a is the standard deviation per day. The parameters a, a, p, and

2
a can now be estimated from various moments of AlnP . For a, we use
e t '

the sample mean and then define the series x = AlnP - a. We then use
t t

estimates of the variance, the fourth moment, and the first order auto-

2 2
covariance of x and x to recover estimates of the remaining three

C
2

a

parameters. Given the AR process for a, we have a ~ N(- , -)

.

t 1-p . 2

a
2

17/2. a .2 e
E(x

t
) - C^) +—T

1-P

2
The sample variance is used to estimate F,(x ).
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4 2

««t>
" 9 T^v + 18

2

r^ + 30*
( 1-P ) 1-P

4
We use the sample fourth moment of x to estimate E(x ). The following

observation is useful:

2 2 4 a 4
9(E(xp)

Z
- E(x*) = 6(^~)^

Finally,

2 2

CovCx^x^) = 2p
2
(—^)[—^ + 2(y§-)

2
]

1-p 1-p

= 2p
2
[(E(x

2
))

2
- (^)

A
]

o EA X . J ^ o

= p [—y~ - (E(xpn.

By plugging in the sample estimates, we get

2 2
Cov(x

t
, x ,)

[E(x*) - (E(x
2
))

2
]

4/9(E(x
2
))

2
- E(xS

a = (1-p)

2"2 2 2 pl

a; = (l-p
Z
)[E(x^) ^_]

1
(1-P)

It is possible to use these parameter estimates to compute estimates

for 8, a, and y, but we use a, p, and a in the discrete-time simulation

of the a process. It is worth noting that these parameter estimates

4 2,2
depend on the excess kurtosis of stock returns. If E(x ) X 3[E(x )] ,
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then the parameter estimation breaks down. Since these estimators are

functions of sample moments, one could set this estimation up as

Hansen's (1982) general method of moments estimator and work out expres-

sions for standard errors of the estimates, but we leave this exercise

to future research.

For the lognormal process in equation (7), we use the following

first order AR process:

lna = a + p lna + e
,

2
where e ~ N(0,a ). This process is a discrete approximation for the

Orns tein-Uhlenbeck process on Una . After computing the sample mean

for AlnP , we again work with x = AlnP - a = a u , where u is stan-

dard normal. With this process, the second and fourth moments of x are

2

E( X 2) = exp{2(
1^-)

+ 2(—^-)j
1-p

2
a

E(x*) = 3 exp{4(^-) + 8(—^y)|.
1 i_P

1-P
2

a
£ a

From the sample moments, we have estimators for ( ^-) and ( , _ ) . There

1-P
are several methods for estimating p. A simple approach is to observe

that iln|x I
» Una + In lu ' and

t
'

t ' t
'

2
a
e

Cov(in|x |, 4n|x |) = p( =").

i-p

a

With estimates of this covariance and ( — ) , we can identifv an esti-

1-P
2

mate for p. Then given p, we can compute estimates of a and a from

the second and fourth moments.
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Estimating the a parameter for either of these processes is con-

siderably more difficult. One possibility is to use the Kalman filter

model for estimating the value of an unobservable variable. For the

first case where a is an Ornstein-Uhlenbeck process, we shall require

additional information. Several studies have presented evidence that

stock return volatility is correlated with volume, measured as either

shares traded or number of transactions. One view of this relation-

ship is that there is an underlying parameter related to the rate at

which information hits the market, which determines both volatility and

volume. The following is one plausible model:

lnv =b+da+n,

where v is volume and n is either white noise or a moving average
t t

process, independent of a . We add to this model our first order AR

process for a . Identification of an ARMA process for volume is not

sufficient for estimating all of the parameters in this equation, but

we can identify these parameters if we use the covariance of lnv with

the square of the stock return. After estimating the necessary para-

meters, one can use the Kalman filter algorithm to compute estimates of

a from the volume data.

For the lognormal process, we observe that we have a linear model

in In |x^ = lna + lnlu I. First we need E(lnlu I), which is
i 1 1 t i 1 1

v
' t

'

-.635181421..., and we have a Kalman filter model:

In x = b* + lna + e ,1

t
'

t t
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2
where b* = E(ln|u |). Var(e ) = Var(ln|u |) = tt"/8. Even though e

is not normally distributed, the Kalman filter estimator for Ina is a

minimum mean squared error estimator within the class of linear esti-

mators. Here we use the Kalman filter algorithm to compute estimates

of lna from stock return data, specifically from In |AlnP - u |

.

One other approach is to assume that the market uses a wide range

of data and information and is able to determine the values of the

variance process. If this were true, then option prices would reflect

the unobservable a process, and researchers could then compute ISD's

which force the model prices to equal actual option prices. This prac-

tice is widely employed in the options literature and we use it in the

next section to examine the ability of this model to fit actual option

prices.

III. An Application of the Random Variance Option Pricing Model

In this section we use both the random variance model of Section I

and the Black-Scholes model to compute prices for call options on

Digital Equipment Corporation (DEC) for the period July 1982 - June 1983.

We have chosen DEC because it does not pay cash dividends and it allows

us to circumvent the dividend problem in this study. DEC is also a

volatile stock. Option prices and stock prices for DEC have been

collected at weekly intervals from the Wall Street Journal , so that we

have 52 days of option prices. We use closing prices every Thursday

except for Thanksgiving when we use Friday prices. Treasury bill prices

are used to impute interest rates. For each option, we choose a T-bill

that matures close to the option's expiration date and compute the

corresponding continuously compounded yield.
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We use daily stock returns for the period 1974 to June 1982 and the

method of moments estimator in Section II to compute estimates of a, p,

and a . The sample size is 2150. For this application, we have used

the Ornstein-Uhlenbeck process for a and the discrete approximation:

a = a + P<* , + e
t

» The three sample moments estimated from the stock

2 — ? A
returns are: sample variance, E(x ) = .4050793 x 10 , E(x ) = .8221057

—f\ 9 9 — 7
x 10 ,.and Cov(x ,x ) = .6817389 x 10 . The sample kurtosis,

4 2 2
E(x

t
)/(E(x )) , equals 5.01. The corresponding parameter estimates for

the discrete a process are p = .7874, a = .003863, and a = .005329.

To estimate the a parameter for different days, we have used a

technique common in the literature. We use at the money options and

find the value of a which provides the best fit of the model to actual

option prices. Formally we minimize the sum of squared errors between

the model and actual prices:

N
min I = E (w. - H. (a ))

. , it it t
a

t
l-l

where w. is the actual price for option i on day t and H (a ) is the
it y

it
v

t

corresponding model price as a function of a . The nonlinear minimiza-

tion technique that we employ uses first derivatives and the expected
o

value of the second derivative. Given a starting value, the iteration

proceeds as follows:

£1
3o

t,i "t,i-l o
= a

N 8H
lt

(a
r

)
? z

2
o

N *
2
"- (° )

where D = 2 Z (
— )\ Note that |-^ = D + E (H. (a ) - w. )

" t
,

i-i i=l 3a

We find that this technique converges quite rapidly for our problem:

typically three to four iterations for the random variance model and
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one or two iterations for the Black-Scholes model. For at the money

options, we use those which have exercise prices within $5 of the stock

price.

Given the o estimates, we compute model prices for the remaining

in-the-money and out-of-the-money options and compare the model prices

to actual prices. The same procedure is repeated with the Black-Scholes

formula: first we estimate the daily a values by minimizing the sum

of squared errors between actual prices and Black-Scholes prices, and

then we use the a estimates to compute Black-Scholes prices for the

remaining options. It should be noted that there is an internal incon-

sistency in this application of the Black-Scholes model. The Black-

Scholes model is derived under the assumption that the variance rate is

constant or at most a deterministic function of time. We then use the

model to calculate ISD's, but allow these to vary from one day to the

next. We make an additional set of calculations for the Black-Scholes

model with a constant variance rate; we use the average of the daily

ISD's computed from the Black-Scholes model.

For the random variance model, we have found that the ISD's are

very sensitive to the value of p used in the simulations. For a low

value of p such as the estimate of .7874, we get extreme variation in

the ISD's. Some initial checks on the method of moments estimation
a

indicate that the estimates of (- ) and ( r-1 are reliable, but we do
1-p , I

not get precise estimates for p. For this reason, we fixed ( ) and

( ) at their estimated values of .018175 and .008645914, respectively,

R. 2
--P

and varied p in the simulations. To control the computing expense, we
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have used the first 26 days of prices on at-the-money options and a

simple grid search to determine the p value which yields the best fit

with the random variance model. We examined values of .95, .98, .99,

and .999, and found that p = .99 provides the best fit. In all the

subsequent calculations, we use p = .99, a = .018175 (1-p), and a

2
.008645914 /l-p . The higher p values implicit in option prices could

also be the result of a negative risk premium, X*.

Various calculations with these models are presented in Tables I—III,

For the Monte Carlo simulations of the random variance model, we use the

9
antithetic variate method and 1000 trials to compute each option price.

To check the accuracy of the simulation method, we have computed prices

and large sample standard errors for deep out-of-the-money , at-the-

money, and deep in-the-money options. The results are contained in

Table I. With 1000 trials, we are able to reduce the standard error of

the estimate to $.0075 in the worst case, which is a deep in-the-money

option with 270 days to expiration (approximately 9 months). This

corresponds to a 95% confidence interval of +_ 11/2 cents.

In Table II, we present the implied standard deviations computed

from both the random variance model and the Black-Scholes model for a

52 week, period from July 1, 1982, to June 23, 1983. Both models are

computed with trading days to expiration so that the ISD's are con-

sistent with standard deviations computed from stock returns. In the

last column, we show the monthly standard deviations; these numbers

reflect the square root of an estimate of the average of the daily

variance rates during the month and contain sampling error. With only

twelve months of data in the table, one cannot make any conclusions as



Table I

Option Prices from the Random Variance Model

1000 trials per estimate a = .025

Exerc ise price = $50 P = .99

r = . 09 per annum a

a
e

=

.018175(1--P)

.008646/1-
2

-P

Option Prices
by Monte Carlo Standard

Stock Days to Simulation of Error of

Price Expiration Equat ion Estimate

$25 30

60
90

120

150
180

210

240
270

3.88 x

.001

.009

.027

.056

.094

.141

.195

.256

10"
-6

3.67 x 10"

.0001

.0003

.0008

.0014

.0019

.0025

.0029

.0034

$50 30

60

90

120
150

180

210
240

270

2.819
3.989
4.883

5.637
6.304
6.912
7.479
8.013

8.518

.0003

.0011

.0022

.0031

.0039

.0044

.0049

.0054

.0057

$75 30

60

90
120

150

180
210

240
270

25.373

25.800
26.282
26.785
27.291
27.790
28.282

28.767
29.240

.0001

.0011

.0026

.0040

.0051

.0059

.0066

.0071

.0075

-7



Table II

Implied Standard Deviations (ISD's)
Estimated from Prices on Options at-the-money

Digital Equipment Corporation

Number of

Options Used
Date for Estimates

7/1/82 4

8 5

15 4

22 4

29 6

8/15/82 6

12 6

19 6

26 5

9/2/82 6

9 3

16 5

23 6

30 5

10/7/82 6

14 4

21 6

28 3

11/4/82 6

11 3

18 2

26 4

12/2/82 3

9 3

16 5

23 5

30 5

1/6/83 6

13 3

20 2

27 3

Random
Variance
Model

.01915

.01718

.01956

.02126

.01812

.02176

.02413

.02393

.02359

.02269

.03032

.02332

.02428

.02685

.02135

.02834

.02618

.03261

.02607

.02826

.02948

.03256

.03209

.03391

.03346

.03172

.03076

.02258

.02953

.02518

.02968

Black-
Scboles
Model

.01938

.01790

.01960

.02072

.01861

.02061

.02215

.02197

.02146

.02112

.02566

.02172

.02208

.02411

.02025

.02484

.02297

.02709

.02312

.02430

.02600

.02757

.02706

.02813

.02852

.02711

.02697

.02096

.02587

.02300

.02497

Estimated
Monthly
Standard

Deviations

.01670

.02740

.02452

.03298

.02984

.02661

.02999



Table II (continued)

2/3/83 3

10 3

17 3

24 3

3/3/83 3

10 3

17 3

24 3

31 3

4/7/83 3

14 2

21 2

28 3

5/5/83 3

12 3

19 3

26 2

6/2/83 3

9 3

16 3

23 3

.03077 .02585

.02876 .02477

.02643 .02350

.02996 .02562

.02614 .02335

.02582 .02333

.02333 .02178

.02112 .02043

.02155 .02085

.01988 .01968

.01772 .01821

.02212 .02125

.02490 .02253

.02181 .02077

.02208 .02089

.02549 .02320

.02356 .02199

.02631 .02353

.02543 .02290

.02767 .02435

.02486 .02283

.02223

.01725

.02038

.02213

.02583
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to which model provides a better estimate of the underlying variance

rate.

In Table III, we present summary statistics for the three different

models. Using 728 options that are either in-the-money or out-of-the-

money, we compute the sum of squared errors and mean squared errors for

each model. The random variance model outperforms the Black-Scholes

models with daily variance rates that change: The mean squared error

for the random variance model is 8.7% less than that for the Black-

Scholes model. Even though there is a difference in the mean squared

error, we have not attempted a formal test. Such a test would be diffi-

cult to construct because the errors in fitting the option prices are

likely to be correlated both across options and over time. The Black-

Scholes model with a single variance estimate performs quite poorly in

comparison with the other two models, and we can conclude that this

model is clearly rejected by the data.

Some researchers have observed that there is a strong bias in the

Black-Scholes model with respect to out-of-the-money options. In

Figures 2 and 3, we have plotted percentage errors against a measure of

whether the option is in or out-of-the-money. The percentage error is

w. H. (a )
it - it t

H. (a )
it t

where H. (a ) is the model price using the estimated ISO, and

S - X.e""
t i

m

.

1

is the measure of whether the option is in or out-of-the-money. This

measure has been used by MacBeth and Merville (1979). Figure 2 is the



Table III

Digital Equipment Corporation
July 1982 to June 1983

52 Trading Days, 728 Option Prices

e. = w. - H J (a )
it it it t

Random Variance
Model

Sum of Squared Errors

539.4189

Mean Squared Error

.7410

Black-Scholes
Model

591.1685 .8120

Black-Scholes
Model with
Single Variance
Estimate

971.4013 1.3343

NOTE: Option prices were collected for Thursday of each week.
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plot for the random variance model and Figure 3 is the plot for the

Black-Scholes model. The graphs are very similar to those in MacBeth

and Merville, and it is apparent that this hias also exists in the ran-

dom variance model. Both models tend to overprice out-of-the-money

options.

IV. Conclusions

We have developed an option pricing model which allows the variance

parameter to change randomly, and although we are not able to develop

an analytical formula, we do derive a model which can produce accurate

estimates of option prices via the method of Monte Carlo simulations.

We have presented evidence in the introduction that stock returns are

not independent over time and that the variance of stock returns changes

randomly, possibly with a mean reverting tendency. The option pricing

model that we develop uses a continuous time diffusion process that

captures this observed behavior for stock return volatility. We have

examined two possible specifications of the variance process, and using

a limited sample we find that the random variance model is marginally

better at explaining actual option prices.
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FOOTNOTES

It is relatively easy to allow the variance parameter to vary as

a deterministic function of time and derive an option pricing formula

similar to the Black-Scholes model. Geske and Roll (1984) have recently
noted that a nonstationary variance may account for some of the biases

observed in empirical applications of the Black-Scholes model.

"And of course, we require the existence of the unconditional
variance.

3
Hull and White also use this simplifying assumption.

4
Note that the Black-Scholes formula also involves numerical inte-

gration to compute N(d-i) and N(d2). Here we would have one added dimen-
sion to the numerical integration.

Levy and Markowitz (1979), for example, have found that functions
of means and variances provide good approximations for expected utility.

We derive this stochastic differential by letting another variable
x be an Ornstein-Uhlenbeck process: dx = 8(a-x)dt + ydz2« Let a

t
=

exp(x
t l and apply Ito's lemma to get da.

See papers by Harris (1985) and Tauchen and Pitts (1983).

g
If the objective function were a likelihood function, the technique

would be called the method of scoring.

9
For a discussion of the antithetic variate method and other Monte

Carlo techniques, see Boyle (1977). The option prices have been com-
puted in CDC Fortran 5. We use the most efficient CDC Fortran compiler
and we use the polar coordinate method for generating standard normal
random variates.
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APPENDIX

In this appendix, we show that the option pricing function in (5)

solves the P.D.E. in (4) subject to the boundary condition. To do

this, we derive the backward equation for a Kac functional with two

state variables and show that with appropriate modifications on the

stock return and a processes, we have the P.D.E. in (4). Our deriva-

tion follows the one in Karlin and Taylor (1981, pp. 222-24) for a Kac

functional with one state variable.

Let w(P ,o
Q
,t) = E

po)<7o

rexp{-rt}g(P
(t)

)]

where g(P, s) is bounded. We use the stochastic differentials for P

and a in equation (1).

-rt , N -rh -r(t-h) ,_ x

e i(P
(t)
>-« • f(F

(t)
)

= (e-
rh

-l)e-
r(t -h)

,(P
(t)

) + e-
r(t -h)

S (P
(t)

)

Applying Taylor's Theorem, we get e ' -1 = -hr + o(h).

W<VV C) = E
P ,a t

E
P(b),a(h)'

(1 -hr+o(h))e
" r(t "h^ P

(t)
)1 f

= E
P0>ao

f (1
-hr+n(h ' )E

P(h),a( h )

[e
" r(t "h),!(P

(t)"l

Now noting that w(P(h) ,a(h) , t-h) = E_,, .
/T
/,x{e~

r t_
g(P. ,)}, we have

P(h;,a(h; (t;

w(P ,a t) - E [(l-hr)w(P(h),a(h),t-h)] + o(h) (A-l)
0'

We now apply a Taylor series expansion to w(«,«,t-h) about the state

variables evaluated at P(h) = P
n

and a(h) = a
,
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w(-,-,t-h) = w(P_,a_,t-h) + (P(h)-P.)
3w(P ,a

Q
,t-h)

0' 0' '
v % ' 0' 3P

3w(P a t-h) 8 w(P a t-h)

+ (a(h)-a
Q

) . °-^ + | (P(h)-P )
2 20

a P

1 , /UN ,2 9 w(PQ> a 0> t-h)
+ T (a(hW ) -2

9a

2
3 w(Pn ,a n ,t-h)

+ CP<l»-P )«.(h)^ > .°
P3

°
- o(h)

Now plug this into (A-l) and take expectations:

w(P ,o
Q
,t) = (1-hr) [w(P ,a

Q
, t-h) + aP

Q
h
^|

2 2 2
. .— v. 3w 1 2 2, 3 w . „ 3 w 12, 3 w.

+ B(a-a
Q
)h ^ + T a^h -3 + 5^— + j y h —]

3P 3a

+ o(h)

w(P
Q
,a ,t) - w(P ,a ,t-h) = -hrw(P ,a

Q
,t-h) + aP

Q
h ^

3w 1 22 u 3
2w . _ , 3

2w
+ B(a-a.)h —- + — a P h —= + 5ya.P_h

3a 2 __2 '00 3P3a
a P

2
1 2, 3 w ., x+ T Y —

2
+ o( ^

3a

Now divide by h and let h go to zero, noting that lim —-— = 0. This

h*0
yields the backward equation:

3w „ ^ w n f— s3w
37= "rw +oP

3?
+B(a -°0 ) 37

2 2 2
1 2„2 3w . „3w 1 23w

+ a P — + S YaP^ +
Y Y —p

3P 3a
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The boundary condition for the backward equation is w(P,a,0) = g(P).

Now let g(P, s) = max{0,P -c} and set a = r and replace 6(a-a) with

[6(a-o) - X*]. The result is the P.D.E. in (4) that we are trying to

solve. Hence risk-neutral valuation with the appropriate adjustments

to the a process solves the P.D.E.
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