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TRANSFORM ANALYSIS AND ASSET PRICING 
FOR AFFINE JUMP-DIFFUSIONS 

BY DARRELL DUFFIE, JUN PAN, AND KENNETH SINGLETON' 

In the setting of "affine" jump-diffusion state processes, this paper provides an 
analytical treatment of a class of transforms, including various Laplace and Fourier 
transforms as special cases, that allow an analytical treatment of a ranige of valuatioin and 
econometric problems. Example applications include fixed-income pricing models, with a 
role for intensity-based models of default, as well as a wide range of option-pricing 
applications. An illustrative example examines the implications of stochastic volatility and 
jumps for option valuation. This example highlights the impact on option 'smirks' of the 
joint distribution of jumps in volatility and jumps in the underlying asset price, through 
both jump amplitude as well as jump timing. 

KEYWORDS: Affine jump diffusions, option pricing, stochastic volatility, Fourier trans- 
form. 

1. INTRODUCTION 

IN VALUING FINANCIAL SECURITIES in an arbitrage-free environment, one in- 
evitably faces a trade-off between the analytical and computational tractability 
of pricing and estimation, and the complexity of the probability model for the 
state vector X. In light of this trade-off, academics and practitioners alike have 
found it convenient to impose sufficient structure on the conditional distribution 
of X to give closed- or nearly closed-form expressions for securities prices. An 
assumption that has proved to be particularly fruitful in developing tractable, 
dynamic asset pricing models is that X follows an affine jump-diffision (AJD), 
which is, roughly speaking, a jump-diffusion process for which the drift vector, 
"instantaneous" covariance matrix, and jump intensities all have affine depen- 
dence on the state vector. Prominent among AJD models in the term-structure 
literature are the Gaussian and square-root diffusion models of Vasicek (1977) 
and Cox, Ingersoll, and Ross (1985). In the case of option pricing, there is a 
substantial literature building on the particular affine stochastic-volatility model 
for currency and equity prices proposed by Heston (1993). 

This paper synthesizes and significantly extends the literature on affine 
asset-pricing models by deriving a closed-form expression for an "extended 
transform" of an AJD process X, and then showing that this transform leads to 
analytically tractable pricing relations for a wide variety of valuation problems. 
More precisely, fixing the current date t and a future payoff date T, suppose 

IWe are grateful for extensive discussions with Jun Liu; conversations with Jean Jacod, Monika 
Piazzesi, Philip Protter, and Ruth Williams; helpful suggestions by anonymous referees and the 
editor; and support from the Financial Research Initiative, The Stanford Program in Finance, aic 
the Gifford Fong Associates Fund at the Graduate School of Business, Stanford University. 
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that the stochastic "discount rate" R(X,), for computing present values of future 
cash flows, is an affine function of X,. Also, consider the generalized terminal 
payoff function (vO + V1 XT)eX' 

7 of XT, where t)o iS scalar and the n elements 
of each of tu1 and u are scalars. These scalars may be real, or more generally, 
complex. We derive a closed-form expression for the transform 

(1.1) E,(exp ( R(Xs, s)ds)(uo + vl XT)ex), 

where E, denotes expectation conditioned on the history of X up to t. Then, 
using this transform, we show that the tractability offered by extant, specialized 
affine pricing models extends to the entire family of AJDs. Additionally, by 
selectively choosing the payoff (vo + Lu IXT)el XT, we significantly extend the set 
of pricing problems (security payoffs) that can be tractably addressed with X 
following an AJD. To motivate the usefulness of our extended transform in 
theoretical and empirical analyses of affine models, we briefly outline three 
applications. 

1.1. Affine, Defaultable Term Structutre Models 

There is a large literature on the term structure of default-free bond yields 
that presumes that the state vector underlying interest rate movements follows 
an AJD under risk-neutral probabilities (see, for example, Dai and Singleton 
(1999) and the references therein). Assuming that the instantaneous riskless 
short-term rate r, is affine with respect to an n-dimensional AJD process X, 
(that is r, = po + pi X,) Duffie and Kan (1996) show that the (T - t)-period 
zero-coupon bond price, 

(1.2) E(exp -frsds) Xt), 

is known in closed form, where expectations are computed under the risk- 
neutral measure.2 

Recently, considerable attention has been focused on extending these models 
to allow for the possibility of default in order to price corporate bonds and other 
credit-sensitive instruments.3 To illustrate the new pricing issues that may arise 
with the possibility of default, suppose that, with respect to given risk-neutral 
probabilities, X is an AJD; the arrival of default is at a stochastic intensity A, 
and upon default the holder recovers a constant fraction w of face value. Then, 
from results in Lando (1998), the initial price of a T-period zero-coupon bond is 

2The entire class of affine term structure models is obtained as the special case of (1.1) found by 
setting R(X,) = i;, it = 0, i'o = 1, and v, = 0. 

3See, for example, Jarrow, Lando, and Turnbull (1997) and Duffie and Singleton (1999). 
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given under technical conditions by 

( 1.3) E (exp (-f (r + At)dt )) w q, dt, 

where qt =E[Atexp( - fot(r1, + A,,)du)]. The first term in (1.3) is the value of a 
claim that pays 1 contingent on survival to maturity T. We may view qt as the 
price density of a claim that pays 1 if default occurs in the "interval" (t, t + dt). 
Thus, the second term in (1.3) is the price of any proceeds from default before T. 
These expectations are to be taken with respect to the given risk-neutral 
probabilities. Both the first term of (1.3) and, for each t, the price density qt can 
be computed in closed form using our extended transform. Specifically, assuming 
that both r, and At are affine with respect to X,, the first term in (1.3) is the 
special case of (1.1) obtained by letting R(X,) = r, + At, u = 0,v o = 1, and v1 = 0. 
Similarly, qt is obtained as a special case of (1.1) by setting it = 0, R(Xt) -r7t + At, 
and vo + L)j -Xt = A,. Thus, using our extended transform, the pricing of default- 
able zero-coupon bonds with constant fractional recoveiy of par reduces to the 
computation of a one-dimensional integral of a known function. Similar reason- 
ing can be used to derive closed-form expressions for bond prices in environ- 
ments for which the default arrival intensity is affine in X along with "gapping" 
risk associated with unpredictable transitions to different credit categories, as 
shown by Lando (1998). 

A different application of the extended transform is pursued by Piazzesi 
(1998), who extends the AJD model in order to treat term-structure models with 
releases of macroeconomic information and with central-bank interest-rate 
targeting. She considers jumps at both random and at deterministic times, and 
allows for an intensity process and interest-rate process that have linear- 
quadratic dependence on the underlying state vector, extending the basic results 
of this paper. 

1.2. Estimation of Affie Asset Pricing Models 

Another useful implication of (1.1) is that, by setting R = 0, vo = 1, and 
Ll = 0, we obtain a closed-form expression for the conditional characteristic 

function $ of XT given Xt, defined by 0(u, Xt, t, T):- E(eilXT I X,), for real u. 
Because knowledge of 0 is equivalent to knowledge of the joint conditional 
density function of XT, this result is useful in estimation and all other applica- 
tions involving the transition densities of an AJD. 

For instance, Singleton (2000) exploits knowledge of b to derive maximum 
likelihood estimators for AJDs based on the conditional density f(- I X,) of Xt+ I 
given Xt, obtained by Fourier inversion of d as 

(1.4) f(X,+1 I X,) = -CN e-''X+0(u, X,, t, t + 1u)du. 
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Das (1998) exploits (1.4) for the specific case of a Poisson-Gaussian AJD to 
compute method-of-moments estimators of a model of interest rates. 

Method-of-moments estimators can also be constructed directly in terms of 
the conditional characteristic function. From the definition of ?p, 

(1.5) E[eilIXI+I - b(u,Xt,t, t + 1)1 X,] = 0, 

so any measurable function of X, is orthogonal to the "error" (eiIX1+1 - 
4(u, Xt, t, t + 1)). Singleton (1999) uses this fact, together with the known 
functional form of p, to construct generalized method-of-moments estimators of 
the parameters governing AJDs and, more generally, the parameters of asset 
pricing models in which the state follows an AJD. These estimators are compu- 
tationally tractable and, in some cases, achieve the same asymptotic efficiency as 
the maximum likelihood estimator. Jiang and Knight (1999) and Chacko and 
Viceira (1999) propose related, characteristic-function based estimators of the 
stochastic volatility model of asset returns with volatility following a square-root 
diffusion.4 

1.3. Affine Option-Pricing Models 

In an influential paper in the option-pricing literature, Heston (1993) showed 
that the risk-neutral exercise probabilities appearing in the call option-pricing 
formulas for bonds, currencies, and equities can be computed by Fourier 
inversion of the conditional characteristic function, which he showed is known in 
closed form for his particular affine, stochastic volatility model. Building on this 
insight,5 a variety of option-pricing models have been developed for state vectors 
having at most a single jump type (in the asset return), and whose behavior 
between jumps is that of a Gaussian or "square-root" diffusion.6 

Knowing the extended transform (1.1) in closed-form, we can extend this 
option pricing literature to the case of general multi-dimensional AJD processes 
with much richer dynamic interrelations among the state variables and much' 
richer jump distributions. For example, we provide an analytically tractable 
method for pricing derivatives with payoffs at a future time T of the form 
(e bXT - c)+, where c is a constant strike price, b e DR", X is an AJD, and 
y+ max(y, 0). This leads directly to pricing formulas for plain-vanilla options 
on currencies and equities, quanto options (such as an option on a common 

4Liu, Pan, and Pedersen (2000) and Liu (1997) propose alternative estimation strategies that 
exploit the special structure of affine diffusion models. 

5Among the many recent papers examining option prices for the case of state variables following 
square-root diffusions are Bakshi, Cao, and Chen (2000), Bakshi and Madan (2000), Bates (1996), 
Bates (1997), Chen and Scott (1993), Chernov and Ghysels (1998), Pan (1998), Scott (1996), and Scott 
(1997), among others. 

6More precisely, the short-term interest rate has been assumed to be an affine function of 
independent square-root diffusions and, in the case of equity and currency option pricing, spot-market 
returns have been assumed to follow stochastic-volatility models in which volatility processes are 
independent "square-root" diffusions that may be correlated with the spot-market return shock. 
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stock or bond struck in a different currency), options on zero-coupon bonds, 
caps, floors, chooser options, and other related derivatives. Furthermore, we can 
price payoffs of the form (b -XT - c) and (e(XTb X- c)0, allowing us to 
price "slope-of-the-yield-curve" options and certain Asian options.7 

In order to visualize our approach to option pricing, consider the price p at 
date 0 of a call option with payoff (ed'T - c)+ at date T, for given d E RI1 and 
strike c, where X is an n-dimensional AJD, with a short-term interest-rate 
process that is itself affine in X. For any real number y and any a and b in R', 
let Ga,b(y) denote the price of a security that pays e"' I at time T in the event 
that b -XT < y. As the call option is in the money when - d _XT < - ln c, and in 
that case pays ed'XT - ceO XT, we have the option priced at 

(1.6) p = Gd _d( - ln c) - cGo,_d( - ln c). 

Because it is an increasing function, G,, () can be treated as a measure. Thus, it 
is enough to be able to compute the Fourier transform 77 Jb(-) of G, b(), defined 
by 

+ rw 

9,b"(Z) = feizdG,(y) 

for then well-known Fourier-inversion methods can be used to compute terms of 
the form G,, b(y) in (1.6). 

There are many cases in which the Fourier transform r, b(J) of Gab ( ) can be 
computed explicitly. We extend the range of solutions for the transform b, ( ) 

from those already in the literature to include the entire class of AJDs by noting 
that Ga l,(Z) is given by (1.1), for the complex coefficient vector u = a + izb, with 
[10 = I and v1) = 0. This, because of the affine structure, implies under regularity 
conditions that 

(1.7) Y' ()e(0)+ 0(0) t(, (1.) a,b(Z) - e 

where a and f3 solve known, complex-valued ordinary differential equations 
(ODEs) with boundary conditions at T determined by z. In some cases, these 
ODEs have explicit solutions. These include independent square-root diffusion 
models for the short-rate process, as in Chen and Scott (1995), and the 
stochastic-volatility models of asset prices studied by Bates (1997) and Bakshi, 
Cao, and Chen (1997). Using our ODE-based approach, we derive other explicit 
examples, for instance, stochastic-volatility models with correlated jumps in both 
returns and volatility. In other cases, one can easily solve the ODEs for a and /3 
numerically, even for high-dimensional applications. 

7In a complementaiy analysis of derivative security valuation, Bakshi and Madan (2000) show that 
knowledge of the special case of (1.1) with v(, + 1 XT = I is sufficient to recover the prices of 
standard call options, but they do not provide explicit guidance as to how to compute this transform. 
Their applications to Asian and other options presumes that the state vector follows square-root or 
Heston-like stochastic-volatility models for which the relevant transforms had already been known in 
closed form. 
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Similar transform analysis provides a price for an option with a payoff of the 
form (d XT - c)+, again for the general AJD setting. For this case, we provide 
an equally tractable method for computing the Fourier transform of Ga,,b,d(), 
where Ga, b d(Y) iS the price of a security that pays edXTa-XT at T in the event 
that b XT ?y. This transform is again of the form (1.1), now with vu = a. Given 
this transform, we can invert to obtain Ga, b, d(Y) and the option price p' as 

(1.8) p' = Ga,,-o( 
- ln c) - cGo -a(- ln c). 

As shown in Section 3, these results can be used to price slope-of-the-yield-curve 
options and certain Asian options. 

Our motivation for studying the general AJD setting is largely empirical. The 
AJD model takes the elements of the drift vector, "instantaneous" covariance 
matrix, and jump measure of X to be affine functions of X. This allows for 
conditional variances that depend on all of the state variables (unlike the 
Gaussian model), and for a variety of patterns of cross-correlations among the 
elements of the state vector (unlike the case of independent square-root 
diffusions). Dai and Singleton (1999), for instance, found that both time-varying 
conditional variances and negatively correlated state variables were essential 
ingredients to explaining the historical behavior of term structures of U.S. 
interest rates. 

Furthermore, for the case of equity options, Bates (1997) and Bakshi, Cao, 
and Chen (1997) found that their affine stochastic-volatility models did not fully 
explain historical changes in the volatility smiles implied by S&P 500 index 
options. Within the affine family of models, one potential explanation for their 
findings is that they unnecessarily restricted the correlations between the state 
variables driving returns and volatility. Using the classification scheme for affine 
models found in Dai and Singleton (1999), one may nest these previous stochas- 
tic-volatility specifications within an AJD model with the same number of state 
variables that allows for potentially much richer correlation among the return 
and volatility factors. 

The empirical studies of Bates (1997) and Bakshi, Cao, and Chen (1997) also 
motivate, in part, our focus on multivariate jump processes. They concluded that 
their stochastic-volatility models (with jumps in spot-market returns only) do not 
allow for a degree of volatility of volatility sufficient to explain the substantial 
"smirk" in the implied volatilities of index option prices. Both papers conjec- 
tured that jumps in volatility, as well as in returns, may be necessary to ex-plain 
option-volatility smirks. Our AJD setting allows for correlated jumps in both 
volatility and price. Jumps may be correlated because their amplitudes are 
drawn from correlated distributions, or because of correlation in the jump times. 
(The jump times may be simultaneous, or have correlated stochastic arrival 
intensities.) 

In order to illustrate our approach, we provide an example of the pricing of 
plain-vanilla calls on the S&P 500 index. A cross-section of option prices for a 
given day are used to calibrate AJDs with simultaneous jumps in both returns 
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and volatility. Then we compare the implied-volatility smiles to those observed 
in the market on the chosen day. In this manner we provide some preliminary 
evidence on the potential role of jumps in volatility for resolving the volatility 
puzzles identified by Bates (1997) and Bakshi, Cao, and Chen (1997). 

The remainder of this paper is organized as follows. Section 2 reviews the 
class of affine jump-diffusions, and shows how to compute some relevant 
transforms, and how to invert them. Section 3 presents our basic option-pricing 
results. The example of the pricing of plain-vanilla calls on the S&P 500 index is 
presented in Section 4. Additional appendices provide various technical results 
and extensions. 

2. TRANSFORM ANALYSIS FOR AJD STATE-VECTORS 

This section presents the AJD state-process model and the basic-transform 
calculations that will later be useful in option pricing. 

2.1. The Affine Jump-Diffusion 

We fix a probability space (Q, P) and an information filtration' (7), and 
suppose that X is a Markov process in some state space D c R"l, solving the 
stochastic differential equation 

(2.1) dXt = AXt ) dt + (X ) dJWt + dZt, 

where W is an (Y7)-standard Brownian motion in lR"; ,:D -* Rf c:D R/ 1Xn1 

and Z is a pure jump process whose jumps have a fixed probability distribution 
v on Rh" and arrive with intensity {A(Xt):t ? 0}, for some A:D -> [0,oo). To be 
precise, we suppose that X is a Markov process whose transition semi-group has 
an infinitesimal generator9 ' of the Levy type, defined at a bounded C2 
function f:D -* R, with bounded first and second derivatives, by 

(2.2) 93f(x) =f,(x)l(x) + 2tr[f, (x)cu(x)f(x) ] 

+ A(x)f [f(x +z) -f(x)]dv(z). 
11 

Intuitively, this means that, conditional on the path of X, the jump times of Z 
are the jump times of a Poisson process with time-varying intensity { A(Xs):O < s 
< t}, and that the size of the jump of Z at a jump time T is independent of 
{X:0 < s < T} and has the probability distribution v. 

8The filtration (3,) = T:t 2 01 is assumed to satisfy the usual conditions, and X is assumed to be 
Markov relative to (5t). For technical details, see for example, Ethier and Kurtz (1986). 

9The generator 39 is defined by the property that {f(X1) - fO&2f(X,)ds:t > 01 is a martingale for 
any f in its domain. See Ethier and Kurtz (1986) for details. 
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For notational convenience, we assume that X0 is "known" (has a trivial 
distribution). Appendices provide additional technical details, as well as general- 
izations to multiple jump types with different arrival intensities, and to time- 
dependent ( ,u, o-, A, v). 

We impose an "affine" structure on Ix, uo(TI and A, in that all of these 
functions are assumed to be affine on D. In order for X to be well defined, 
there are joint restrictions on (D, /, o-, A, v), as discussed in Duffie and Kan 
(1996) and Dai and Singleton (1999). The case of one-dimensional nonnegative 
affine processes, generalized as in Appendix B to the case of general Levy jump 
measures, corresponds to the case of continuous branching processes with 
immigration (CBI processes). For this case, Kawazu and Watanabe (1971) 
provide conditions (in the converse part of their Theorem 1.1) on /1, ur, A, and v 
for existence, and show that the generator of the process is affine (in the above 
sense) if and only if the Laplace transform of the transition distribution of the 
process is of the exponential-affine form.10 

2.2. Transforms 

First, we show that the Fourier transform of X, and of certain related random 
variables is known in closed form up to the solution of an ordinary differential 
equation (ODE). Then, we show how the distribution of X, and the prices of 
options can be recovered by inverting this transform. 

We fix an affine discount-rate function R:D -- R. The affine dependence of 
x, TI A, and R are determined by coefficients (K, H, 1, p) defined by: 

. WX = KO + K] X, for K = (KOI K,) EE R" X R"x. 
. (u(x)u(x)T)ij = (Ho)ij + (Hl)ij x, for H = (HO, H1) E RI' XII x R" XII XII. 
* A(x=10 -+1 x, for l=(l0,l )E R x R". 
* R(x)=p(?+p1 X, forp=(po,pl)ElRX R". 
For c EE C", the set of n-tuples of complex numbers, we let 0(c)= fR,exp(c 

z)dv(z) whenever the integral is well defined. This "jump transform" 0 deter- 
mines the jump-size distribution. 

The "coefficients" (K, H, 1, 0) of X completely determine its distribution, 
given an initial condition X(O). A "characteristic" X = (K, H, 1, 0, p) captures 
both the distribution of X as well as the effects of any discounting, and 
determines a transform qfrX: C xD x R+ x R+ >? C of XT conditional on 
when well defined at t < T, by 

(2.3) qfrX(u, X, t, T) = E( exp( - R(Xs)ds +elXT '9St) 

l Independently of our work, Filipovic (1999) applies these results regarding CBI processes to 
fully characterize all affine term structure models in which the short rate is, under an equivalent 
martingale measure, a one-dinmensional nonnegative Markov process. Extending the work of Brown 
and Schaefer (1993), Filipovic shows that it is necessary and sufficient for an affine term structure 
model in this setting that the underlying short rate process is, risk-neutrally, a CBI process. 
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where E x denotes expectation under the distribution of X determined by X. 
Here, t/ix differs from the familiar (conditional) characteristic function of the 
distribution of XT because of the discounting at rate R(X,). 

The key to our applications is that, under technical regularity conditions given 
in Proposition 1 below, 

(2.4) qfrX(u, x, t, T) = ea(t)+:(t), 

where 13 and a satisfy the complex-valued ODEs" 

(2.5)' /3(t) = p, -K1 /3(t) - -,6(t) H, ,6(t) - i(o( ,3(t)) - 1) 
2 
1 

(2.6) &(t) = p0 -K0o q(t) - - 0(t)T H0 /3(t) - l(o( /3(t)) - 1), 
2 

with boundary conditions /3(T) = u and a (T) = 0. The ODE (2.5)-(2.6) is easily 
conjectured from an application of Ito's Formula to the candidate form (2.4) of 
qfrx. In order to apply our results, we would need to compute solutions a and /3 
to these ODEs. In some applications, as for example in Section 4, explicit 
solutions can be found. In other cases, solutions would be found numerically, for 
example by Runge-Kutta. This suggests a practical advantage of choosing a jump 
distribution v with an explicitly known or easily computed jump transform 0. 

The following technical conditions will justify this method of calculating the 
transform. 

DEFINITION: A characteristic (K, H, 1, 0, p) is well-behaved at (u, T) EE C? x 
[0, oc) if (2.5)-(2.6) are solved uniquely by ,3 and a; and if 

(i) E(J Iyt dt) <oc, where yt = t(0( (3(t)) -1)A(X), 

(ii) E[(f 1t, 71dt)] < 0, where qt = It(3(t) Tc(X,), and 

(iii) E(IWT I) < X(, 

where 't = exp( - f tR(X,)ds)e a(t)0+(t)?X(t). 

PROPOSITION 1: Suppose (K, H, 1, 0, p) is well-behaved at (u, T). Then the 
trcansform /i x of X defined by (2.3) is given by (2.4). 

PROOF: It is enough to show that t is a martingale, for then et = E(WT t), 
and we can multiply lt by exp(f tR(Xs)ds) to get the result. By Ito's Formula,'2 

(2.7) t = ? fo + t W,s (s)ds + tm710dWy + J, 

11Here, cTH1c denotes the vector in C" with kth element Ej cj(H 
l See Protter (1990) for a complex version of Ito's Formula. 
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where, using the fact that a and /3 satisfy the ODE (2.5)-(2.6), we have u/, = 0, 
and where 

it= (IT(i) TM- IM) - f ds, 
0 < T(i) < t 

with T(i) = inf{t:Nt = i} denoting the ith jump time of X. Under the integrability 
condition (i), Lemma 1 of Appendix A implies that J is a martingale. Under 
integrability condition (ii), f-qdW is a martingale. Thus t is a martingale and we 
are done. Q.E.D. 

Anticipating the application to option pricing, for each given (d, c, T) E DR" x 
R x 1R, our next goal is to compute (when well defined) the "expected present 
value" 

(2.8) C(d, c, T, x) Ex(' ( -x-TR(Xs)ds )(edXT -)+ 

We have 

(2.9) C(d c, T, X) = Ex (exp - TR(X )ds) (ed.XT - c)ldxT ? ln(c)) 

= Gd, -d(- ln(c); Xo, T, X)- cGo, -d(- ln(c); Xo , T, X), 

where, given some (x, T, a, b) E D x [0, x) X R 1 x RD, Ga bQ;x, T, X): R --> R + is 
given by 

(2.10) Ga b(y; Xo, T, X) = Ex(exp(- R(X-)dsXe b XT < 

The Fourier-Stieltjes transform 
'abQ; XJT, Xy) of GnbQ; X, T, X), if well 

defined, is given by 

a, b ( v; XO, T, X) = f ei)j,dGa b(Y; XO, T, X) 

= Ex(exp(-f R(Xs)ds)exp[(a + ib) XT]) 

= td x (a + ivnb, XO, O, T). 

We may now extend the Levy inversion formula13 (from the typical case of a 
proper cumulative distribution function) to obtain the following result. 

PROPOSITION 2 (Transform Inversion): Suppose, for fixed T E [0, oc), a ER 
and b E R"l, that X = (K, H, 1, 0, p) is well-behaved at (a + ivb, T) for atny v E , 

13See, for example, Gil-Pelaez (1951) and Williams (1991) for a treatment of the Levy inversion 
formula. 
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and that 

(2.11) f l"5(a + ivb,x,0,T)l dv < x. 

Then Ga, b(; x, T, X) is well defined by (2.10) and given by 

(2.12) Ga,b(y;Xo, T,X)= qf(a, X0,0, T) 
2 

1 p ImVItx(a +ivb,X0,0,T)e-iY] 

v 

where Im(c) denotes the imaginary part of c E C. 

A proof is given in Appendix A. For R = 0, this formula gives us the 
probability distribution function of b XT. The associated transition density of X 
is obtained by differentiation of Ga,b. More generally, this provides the transi- 
tion function of X with "killing" at rate'4 R. 

2.3. Extended Transform 

As noted in the introduction, certain pricing problems in our setting, for 
example Asian option valuation or default-time distributions, call for the calcu- 
lation of the expected present value of the product of affine and exponential- 
affine functions of XT. Accordingly, we define the "extended" transform pX 
HRn o ?n x D x R+ x R+ ? of XT conditional on ,7, when well defined for 
t < T by 

(2.13) X(v, u, Xt, t, T) = E(exp - TR(Xs) ds) (v XT)euxT | t). 

The extended transform 0 x can be computed by differentiation of the 
transform qf X, just as moments can be computed from a moment-generating 
function (under technical conditions justifying differentiation through the expec- 
tation). In practice, computing the derivatives of the transform calls for solving a 
new set of ODEs, as indicated below. Specifically, under technical conditions, 
including the differentiability of the jump transform 0, we show that 

(2.14) 4X(v, u, x, t, T) = i/i X(u, x, t, T)(A(t) + B(t) x), 

where iX is given by (2.4), and where B and A satisfy the linear ordinary 
differential equations 

(2.15) - B(t) = KiT B(t) + ,8(t)T H,B(t) + l,V0( ,3(t))B(t) 

(2.16) -A(t) = KO *B(t) + f3(t)T HOB(t) + 10V0( f,(t))B(t), 

14A negative R is sometimes called a "creation" rate in Markov-process theory. 
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with the boundary conditions B(T) = v and A(T) 0= , and where V0(c) is 
gradient of 0(c) with respect to c E (1. 

PROPOSITION 3: Suppose X (K, H, 1, 0, p) is "extended" well-behaved at 
(v, u, T), a technical condition stated in Appendix A. Then the extended transform 
Xx defined by (2.13) is given by (2.14). 

One could further extend this approach so as to calculate higher-order 
moments, as in Pan (1998). 

3. OPTION PRICING THEORY 

This section applies our basic transform analysis to the pricing of options. In 
all cases, we assume that the price process S of the asset underlying the option 
is of the form St = (a(t) + b(t)-X,)ea()?b() x, for deterministic i(t), b(t), a(t), 
and b(t). This is the case for many applications in affine settings, including 
underlying assets that are equities, currencies, and zero-coupon bonds. 

Two traditional formulations15 of the asset-pricing problem are: 
1. Model the "risk-neutral" behavior of X under an equivalent martingale 

measure Q. That is, take X to be an affine jump-diffusion under Q with given 
characteristic XQ. Then apply (2.9) and (2.12). 

2. Model the behavior of X as an affine jump-diffusion under the actual (that 
is, the "data-generating") measure P. If one then supposes that the state-price 
density (also known as the "pricing kernel" or "marginal-rate-of-substitution" 
process) is an exponential-affine form in X, then X is also an affine jump-diffu- 
sion under Q, and one can either: 

(a) calculate, as in Appendix C, the implied equivalent martingale measure 
Q and associated characteristic XQ of X under Q, and proceed as in the first 
alternative above, or 

(b) simply apply the definition of the state-price density, which determines 
the price of an option directly in terms of Ga,b, computed using our transform 
analysis. This alternative is sketched in Section 3.2 below. 

15A popular variant was developed in a Gaussian setting by Jamshidian (1989). In a setting in 
which X is an affine jump-diffusion under the equivalent martingale measure Q, one normalizes the 
underlying exponential-affine asset price by the price of a zero-coupon bond maturing on the option 
expiration date T. Then, in the new numeraire, the short-rate process is of course zero, and there is 
a new equivalent martingale measure Q(T), often called the "forward measure," under which prices 
are exponential affine. Application of Girsanov's Theorem uncovers new affine behavior for the 
underlying state process X under Q(T), and one can proceed as before. The change-of-measure 
calculations for this approach can be found in Appendix C. 
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Of course, the two approaches are consistent, and indeed the second formula- 
tion implies the first, as indicated. The second approach is more complete, and 
would be indicated for empirical time-series applications, for which the "actual" 
distribution of the state process X as well as the parameters determining 
risk-premia must be specified and estimated. 

Applications of these approaches to call-option pricing are briefly sketched in 
the next two subsections. Other derivative pricing applications are provided in 
Section 3.3. 

3.1. Risk-Neutral Pricing 

Here, we take Q to be an equivalent martingale measure associated with a 
short-term interest rate process defined by R(X,) = po + Pi *X,. This means that 
the market value at time t of any contingent claim that pays an AT-measurable 
random variable V at time T is, by definition, 

(3.1) EQ (exp(-J R(Xs)ds) V |YSt), 

where, under Q, the state vector X is assumed to be an AJD with coefficients 
(KQ, HQ, Q,O Q). The relevant characteristic for risk-neutral pricing is then 
XQ = (KQ, HQ, IQ, oQ, p). It need not be the case that markets are complete. 
The existence of some equivalent martingale measure and the absence of 
arbitrage are in any case essentially equivalent properties, under technical 
conditions, as pointed out by Harrison and Kreps (1979). For recent technical 
conditions, see for example Delbaen and Schachermayer (1994). 

We let S denote the price process for the security underlying the option, and 
suppose for simplicity 16 that ln (St) = Xt('), an element of the state vector 
X=(X(= ...X(`l)). Other components of the state process X may jointly 
specify the arrival intensity of jumps, the behavior of stochastic volatility, the 
behavior of other asset returns, interest-rate behavior, and so on. The given 
asset is assumed to have a dividend-yield process { ;(X,):t ? 0} defined by 

(3.2) ;(x) = q0 + q1 x, 

for given q0 E R and q1 E R'. For example, if the asset is a foreign currency, 
then ;(X,) is the foreign short-term interest rate. 

16The more general case of S, = exp(a1, + b, X,) can be similarly treated. Possibly after some 
innocuous affine change of variables in the state vector, possibly involving time dependencies in the 
characteristic X, we can always reduce to the assumed case. 
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Because Q is an equivalent martingale measure, the coefficients K,Q= 
((K Q)i, (K )i) determining17 the "risk-neutral" drift of X(i) - InS are given by 

0 1~~~~~~~ 

(3.3) (KQ)i = Po - - (HQ)i- lQ(0(s(i)) - 1), 

(3.4) (KQ)i = p1- q- (Q)- iQ(0(8(i)) - 1), 1 ~~2 1 ii 

where e(i) E R " has 1 as its ith component, and every other component equal 
to 0. 

Unless other security price processes are specified, the risk-neutral character- 
istic XQ is otherwise unrestricted by arbitrage considerations. There are analo- 
gous no-arbitrage restrictions on XQ for each additional specified security price 
process of the form ea 

By the definition of an equivalent martingale measure and the results of 
Section 2.2, a plain-vanilla European call option with expiration time T and 
strike c has a price p at time 0 that is given by (2.9) to be 

(3.5) p = G8(1) -?(i)(ln(c); X0, T, XQ) - cGo, -8(i)( -ln(c); X0, T, XQ) 

To be precise, we can exploit Propositions 1 and 2 and summarize this 
option-pricing tool as follows, extending Heston (1993), Bates (1996), Scott 
(1997), Bates (1997), Bakshi and Madan (2000), and Bakshi, Cao, and Chen 
(1997). 

PROPOSITION 4: The option-pricing formula (2.9) applies, where G is conputed 
by (2.12), provided: 

(a) X is well-behaved at (d - ivd, T) and at ( ivd, T), for all v E- R , and 
(b) fR I q v(d - ivd , x, O, T) I dv) < oo, andflR I ip x(- ivd, x, O, T)l dv < oo. 

3.2. State-Price Density 

Suppose the state vector X is an affine jump-diffusion with coefficients 
(K, H, 1, 0) under the actual (data-generating) measure P. Let ( be an (9)- 
adapted "state-price density," defined by the property that the market value at 
time t of any security that pays an 5w-measurable random variable V at time T 

71Under (3.3)-(3.4), we have 

St-St = fJS [R(X) - (X)]du + f s(i(x )TdwQ 
o o 

+ E S,,_(exp(dAX,(')-1)- f1S1(Q(8(i))-i)(lQ+i0 X,)du, 
O<u? t 

where WQ is an (.,7)-standard Brownian motion in R under Q. (Here, AX, =XI -XI_ denotes the 
jump of X at t.) As the sum of the last 3 terms is a local Q-martingale, this indeed implies 
consistency with the definition of an equivalent martingale measure. 
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is given by 

E(VM(T) Y7). 

We assume for convenience that 4t = e('(t)+b(t) Xt, for some bounded measurable 
a:[0, oo) -> R and b:[0, oo) -> R". Without loss of generality, we take it that 
g:(O) = 1. 

Suppose the price of a given underlying security at time T is e(ldX(T), for some 
d E -'. By the definition of a state-price density, a plain-vanilla European call 
option struck at c with exercise date T has a price at time 0 of 

p = E[ea(T)+b(T)AX(T)(e x(T) _ c) + 

This leaves the option price 

p = ea(T )Gb(T)+d? d(-Iln c; X, T, XO) 

- cea(T)Gb(T) -6d(-ln c; X0, T, X?), 

where X0 = (K, H, 1, 0,0). (One notes that the short-rate process plays no role 
beyond that already captured by the state-price density.) 

As mentioned at the beginning of this section, and detailed in Appendix C, an 
alternative is to translate the option-pricing problem to a "risk-neutral" setting. 

3.3. Other Option-PricingApplications 

This section develops as illustrative examples several additional applications 
to option pricing. For convenience, we adopt the risk-neutral pricing formula- 
tion. That is, we suppose that the short rate is given by R(X), where R is affine, 
and X is an affine jump-diffusion under an equivalent martingale measure Q. 
The associated characteristic XQ is fixed. While we treat the case of call options, 
put options can be treated by the same method, or by put-call parity. 

3.3.1. Bond Derivatives 

Consider a call option, struck at c with exercise date T, on a zero-coupon 
bond maturing at time s > T. Let A(T, s) denote the time-T market price of the 
underlying bond. From Duffie and Kan (1996), under the regularity conditions 
given in Section 2.2, 

A(T, s) = exp(a (T, s,0) + ,8(T, s,0) XT), 

where, from this point, for any u we write f3(t, T, u) and a(t, T, u) for the 
solution to (2.5)-(2.6), adding the arguments (T, u) so as to indicate the 
dependence on the terminal time T and boundary condition u for /3, which will 
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vary in what follows. At time T, the option pays 

(3.6) (A(T, s) -_ = (e (Tso)?P(Tso)x(T)-c)+ 

(3.7) - ea(T 
s )(e /3(T, s,O) X(T) - ea(T, s)C) + 

The value of the bond option can therefore be obtained from (2.9) and (2.12). 
The same approach applies to caps and floors, which are simply portfolios of 
zero-coupon bond options with payment in arrears, as reviewed in Appendix D. 
This extends the results of Chen and Scott (1995) and Scott (1996). Chacko and 
Das (1998) work out the valuation of Asian interest-rate options for a large class 
of affine models. They provide numerical examples based on a multi-factor 
Cox-Ingersoll-Ross state vector. 

3.3.2. Quantos 

Consider a quanto of exercise date T and strike c on an underlying asset with 
price process S = exp(X(')). The time-T payoff of the quanto is (ST M(XT) - c)+, 
where M(X) = e", for some in E R". The quanto scaling M(XT) could, for 
example, be the price at time T of a given asset, or the exchange rate between 
two currencies. The initial market value of the quanto option is then 

G,(l + 0(i), _ R(i)(-ln(c); x, T, XQ) - cGO (i)( -ln(c); x, T, XQ). 

An alternative form of the quanto option pays M(XT)(ST - C)+ at T, and has 
the price G,, + ?(i) - ?(i)( - ln(c); x, T, XQ) - cG,, 8(i)( - ln(c); x, T, XQ). 

3.3.3. Foreign Bond Options 

Let exp(X(')) be a foreign-exchange rate, R(X) be the domestic short interest 
rate, and ;(X) be the foreign short rate, for affine ;. Consider a foreign 
zero-coupon bond maturing at time s, whose payoff at maturity, in domestic 
currency, is therefore exp(Xs()). The risk-neutral characteristic XQ is restricted 
by (3.3)-(3.4). From Proposition 1, the domestic price at time t of the foreign 
bond is Af(t, s) = exp( a(t, s, ?(i)) + 83(t, s, ?(i)) X,). 

We now consider an option on this bond with exercise date T < s and 
domestic strike price c on the foreign s-year zero-coupon bond, paying (AV(T, s) 
- c)+ at time T, in domestic currency. The initial market value of this option 
can therefore be obtained as for a domestic bond option. 

3.3.4. Chooser Options 

Let S(') = exp(X(')) and S-i) = exp(X(j)) be two security price processes. An 
exchange, or "chooser," option with exercise date T, pays max(SMj), S(i)). De- 
pending on their respective dividend payout rates, the risk-neutral characteristic 
XQ is restricted by (3.3)-(3.4), applied to both i and j. The initial market value 
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of this option is 

G (i)_ 0)- j(0; x, T, XQ) + G8(j)0(0, x, T, XQ) 

- GC (j), (j> (i)(0; X, T, XQ) 

3.3.5. Asian Options 

Under the assumption of a deterministic short rate and dividend-yield pro- 
cess, that is, Pi = q, = 0, we may also use the extended transform analysis of 
Section 2.3 to price Asian options. Let X(i) be the underlying price process of 
an Asian option with strike price c and expiration date T. The option pays 
(l/TfOTXt(/)dt - c)+ at the expiration date T. If Q is an equivalent martingale 
measure, we must have 

dXt(') = (R(Xt) - j(Xt))Xtdt + dM/t), 

where M' is a Q-martingale. For any 0 < t < T, let Yt = ,-tXs()ds. For short rate 

Po, we can let pO = ( po, 0) and Pi = (0, 0) = 0, and see that, under Q, X = (X, Y) 
is an (n + 1)-dimensional affine jump diffusion with characteristic X = 

(K, H, 1, 0, p) that can be easily derived from using the fact that dYt = X(')dt. 
We thus obtain the initial market value of the Asian option, under technical 
regularity, as'8 

G8(11+I)' -,+ 1),-cT, X0,T, c) - g _ (,,+l,)( -cT; X0, T, x) 

where G() is given by (2.12) and where, for a, b, and d in lR", 

(3.8) GI1b,d(y; x, T, X;) 2 

I J-.Im[x(a,d+ivb,x,0,T)e-] 

This calculation of G b d and the Asian option price is in parallel with the 
calculation (2.12) of Ga, b' using Fourier-inversion of the extended transform 
+ X, and is justified provided that X is extended well behaved at (a, d + ivb, T) 
for any LJ E R, and that fR I 0 X(a, d + ivb, x, 0, T)( dv) < 0. 

As zero-coupon bond yields in an AJD setting are affine, we can also apply 
the extended-transform approach to the valuation of slope-of-the-yield-curve 
options. 

'8In this context, ?(i) E R1+ 1 has 1 as its ith component, and every other component equal to 0. 
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4. A "DOUBLE-JUMP" ILLUSTRATIVE MODEL 

As an illustration of the methodology, this section provides explicit transforms 
for a 2-dimensional affine jump-diffusion model. We suppose that S is the price 
process, strictly positive, of a security that pays dividends at a constant propor- 
tional rate ', and we let Y = ln(S). The state process is X = (Y, V))T, where V is 
the volatility process. 

We suppose for simplicity that the short rate is a constant r, and that there 
exists an equivalent martingale measure Q, under which'9 

(4.1) d( )=(dt + t dWQ + dZ 

where WQ is an (9t)-standard Brownian motion under Q in 2, and Z is a pure 
jump process in l2 with constant mean jump-arrival rate A, whose bivariate 
jump-size distribution v has the transform 0. A flexible range of distributions of 
jumps can be explored through the specification of 0. The risk-neutral coeffi- 
cient restriction (3.3) is satisfied if and only if 7= 0(1,0) - 1. 

Before we move on to special examples, we lay out the formulation for option 
pricing as a straightforward application of our earlier results. At time t, the 
transform20 qf of the log-price state variable YT can be calculated using the 
ODE approach in (2.6) as 

(4.2) q/(u, (y, v), t, T) = exp (-a(T - t, u) + uy + ,8(T - t, u)v), 

where, letting b = o-,, pu - KZ,, a = u(1 - u), and2' y = b2 ? acr7, we have 

(4.3) 13&,a)= - a(l - e -T) 
(4.3) 8(', u) = 

2y- (y + b)(1 - )e- 

(4.4) -a (r, u) = ao0(r, u) - Ar(1 + iZu) + A] O(u, /8(s, u)) ds, 

where 22 

ao(j, U) =-rT + (r - )uT 

y(+b 2 n Y+b 
- ~ 0-, 

2 
.+ 

2 l1- 2y(1-e-7 

19Unless otherwise stated, the distributional properties of (Y, V) described in this section are in a 
"risk-neutral" sense, that is, under Q. 

20That is, /1(i, (y, v)', t, T)= /, x((u, 0)', (y, v)', t, T), where X is the characteristic under Q of X 
associated with the short rate defined by ( po, pl) (r, 0). 

To be more precise, r i2 1/2 exp(i arg(-y)/2), where 2= b2 + ao Note that for any 
z E C, arg(z) is defined such that z = I z Iexp(iarg(z)), with - ,T < arg(z) < ir. 

22For any z E C, ln(z) lnI z I + iarg(z), as defined on the "principal branch." 
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and where the term JJf(u, f(s, u))ds depends on the specific formulation of 
bivariate jump transform 0(, ). 

4.1. A Concete Example 

As a concrete example, consider the jump transform 0 defined by 

(4.5) O(c1,c2) =A(AY'OY(cl) + AVO"(c2) + AC0`(c,,c2)), 

where A = A' + A" + Ac, and where 

O0'(c) = exp ( L,c + 2 2) 

0c((C1c2) = 

91-HCl'XPCl 

1x -c 
- -,c 

What we incorporate in this example is in fact three types of jumps: 
* jumps in Y, with arrival intensity Ay and normally distributed jump size with 

~2, mean _t,, and variance 
* jumps in V, with arrival intensity A" and exponentially distributed jump size 

with mean /,t, 
* simultaneous correlated jumps in Y and V, with arrival intensity Ac. The 

marginal distribution of the jump size in V is exponential with mean Kc,l. 
Conditional on a realization, say z, of the jump size in V, the jump size in Y is 
normally distributed with mean pt ,, + pjZ,,, and variance rc,Y. 

In Bakshi, Cao, and Chen (1997) and Bates (1997), the SVJ-Y model, defined 
by A" = Ac = 0, was studied using cross sections of options data to fit the 
"'volatility smirk." They find that allowing for negative jumps in Y is useful 
insofar as it increases the skewness of the distribution of YT, but that this does 
not generate the level of skewness implied by the volatility smirk observed in 
market data. They call for a model with jumps in volatility. Using this concrete 
"double-jump" example (4.5), we can address this issue, and provide some 
insights into what a richer specification of jumps may imply. 

Before leaving this section to explore the implications of jumps for "volatility 
smiles," we provide explicit option pricing through the transform formula (4.2), 
by exploiting the bivariate jump transform 0 specified in (4.5). We have 

f0(u, f(s,u))ds =A '(Av"f'v(u,T) + A'"f"(u,r) + Acfc(ut,-r)), 
0 
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where 

fY'(u, T) = T exp ( 2yu + 2l,t2) 

f 1, (U~ -r) 
y - b 

I 
y -b + t,,,a 

2____ ____ (a( + b) - [L,.a 
In 1 - (1 ~e YT)I 

>2 _ (b - /ia)2 2k 

2U 
2 

fC(u,) = exp ILc yu + o-c2jY 2)d, 

where a = u(1 - u), b = o4i pu - K,,, C = 1 - pJ Lc,u, and 

d-y 
- b 

(yy-b)c + uc a 

- 
C2 _ lnlbc' 

- 
e, va)2]2.yc J 

4.2. Jump Impact on "Volatility Smiles" 

As an illustration of the implications of jumps for the volatility smirk, we first 
select three special cases of the "double-jump" example just specified: 

SV: Stochastic volatility model with no jumps, obtained by letting A = 0. 
SVJ-Y: Stochastic volatility model with jumps in price only, obtained by letting 

Ay' > 0, and A" = Ac = 0. 
SVJJ: Stochastic volatility with simultaneous and correlated jumps in price 

and volatility, obtained by letting Ac > 0 and Ay' = A" = 0. 
In order to choose plausible values for the parameters governing these three 

special cases, we calibrated these three benchmark models to the actual 
"market-implied" smiles on November 2, 1993, plotted in Figure 1.23 For each 
model, calibration was done by minimizing (by choice of the unrestricted 
parameters) the mean-squared pricing error (MSE), defined as the simple 
average of the squared differences between the observed and the modeled 
option prices across all strikes and maturities. The risk-free rate r is assumed to 
be 3.19%, and the dividend yield e is assumed to be zero. 

Table I displays the calibrated parameters of the models. Interestingly, for 
this particular day, we see that adding a jump in volatility to the SVJ-Y model, 
leading to the model SVJJ model, causes a substantial decline in the level of the 

23The options data are downloaded from the home page of Yacine Ait-Sahalia. There is a total of 
87 options with maturities (times to exercise date) ranging from 17 days to 318 days, and strike prices 
ranging from 0.74 to 1.17 times the underlying futures price. 
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FIGURE 1.-"Smile curves" implied by S&P 500 Index options of 6 different maturities. Option 
prices are obtained from market data of November 2. 1993. 

TABLE I 

FlrfED PARAMETER VALUES FOR SV, SVJ-Y, AND SVJJ MODELS 

sv SVJ-Y SvJJ 

p -0.70 -0.79 -0.82 
1) 0.019 0.014 0.008 

Kil 6.21 3.99 3.46 
07, 0.61 0.27 0.14 
Ac 0 0.11 0.47 
,ii n/a -0.12 -0.10 

0-1, n/a 0.15 0.0001 
in/a 0 0.05 

Pi n/a n/a -0.38 

/VO 10.1% 9.4% 8.7% 

MSE 0.0124 0.0071 0.0041 

aThe par-ameters are estimated by timinimiizinig mean squared errors (MSE). A 
total of 87 optioins, obser-ved oni Novemyber 2, 1993, are Llsed. V is the estimiiated 
value of stochastic volatility on the samiiple day. The _-isk-fr-ee r-ate is assumed to be 
fixed at r = 3.19%, and the dividencl yield at 6 = 0. From "risk neutrality," 
,ii= 0(1,0)- 1. 
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parameter o-(, determining the volatility of the diffusion component of volatility. 
Thus, the volatility puzzle identified by Bates and Bakshi, Cao, and Chen, 
namely that the volatility of volatility in the diffusion component of V seems too 
high, is potentially explained by allowing for jumps in volatility. At the same 
time, the return jump variance oJ,2 declines to approximately zero as we replace 
the SVJ-Y model with the SVJJ model. The instantaneous correlation among 
the jumps in return and volatility in the SVJJ model is [L, pJ(uj1,2 + z,2pt2)-1/2. 

Thus, one consequence of the small o-,2 is that the jump sizes of Y and of V are 
nearly perfectly anticorrelated. This correlation reinforces the negative skew 
typically found in estimation of the SV model for these data,24 as jumps down in 
return are associated with simultaneous jumps up in volatility. 

In order to gain additional insight into the relative fit of the models to the 
option data used in our calibration, Figures 2 and 3 show the volatility smiles for 
the shortest (17-day) and longest (318-day) expiration options. For both maturi- 
ties, there is a notable improvement of fit with the inclusion of jumps. Further- 
more, the addition of a jump in volatility leads to a more pronounced smirk at 
both maturities and one that, based on the relative values of the MSE in Table 
I, produces a better overall fit on this day. 

Next, we go beyond this fitting exercise, and study how the introduction of a 
volatility jump component to the SV and SVJ-Y models might affect the 
"volatility smile," and how correlation between jumps in Y and V affects the 
"volatility smirk." We investigate the following three additional special cases: 

1. The SVJ-V model: We extend the fitted SV model by letting A" = 0.1 and 
Ay = Ac = 0. We measure the degree of contribution of the jump component of 
volatility by the fraction A'/-,/(,j!V0 + A'/J_) of the initial instantaneous vari- 
ance of the volatility process V that is due to the jump component. By varying 
J-,,, the mean of the volatility jumps, three levels of this volatility "jumpiness" 
fraction are considered: 0, 15%, and 30%. For each case, the time-0 instanta- 
neous drift, variance, and correlation are fixed at those implied by the fitted SV 
model by varying o-(, v, and -p. 

2. The SVJ-Y-V model: We extend the fitted SVJ-Y model by letting A"l= 
AV', AC = 0, and AV' be fixed as given in Table I. Again, the volatility "jumpiness" 
is measured by the fraction of the instantaneous variance of V that is due to the 
jump component. Three jumpiness levels, 0, 15%, and 30% are again consid- 
ered. For each case, the instantaneous drift, variance, and correlation are 
matched to the fitted SVJ-Y model. 

3. Finally, we modify the fitted SVJJ model by varying the correlation be- 
tween simultaneous jumps in Y and V. Five levels of correlation are considered: 
- 1.0, - 0.5, 0, 0.5, and 1.0. For each case, the means and variances of jumps in 
V and Y are calibrated to the fitted SVJJ model. 

The implied 30-day "volatility smiles" for the above three variations are 
plotted in Figures 4, 5, and 6. 

24 In addition to the "calibration" results in the literature, see the time-series results of Chernov 
and Ghysels (1998) and Pan (1998). For related work, see Poteshman (1998) and Benzoni (1998). 
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FIGURE 2.--Smile curves" implied by S&P 500 Index options with 17 days to expiration. 
Diamonds show observed Black-Scholes implied volatilities on November 2, 1993. SV is the 
Stochastic Volatility Model, SVJ-Y is the Stochastic Volatility Model with Jumps in Returns, and 
SVJJ is the Stochastic Volatility Model with Simultaneous and Correlated Jumps in Returns and 
Volatility. Model parameters were calibrated with options data of November 2, 1993. 

The results for the SVJ-V model show that, for out-of-the-money (OTM) 
calls, the introduction of a jump in volatility lowers Black-Scholes implied 
volatilities. Bakshi, Cao, and Chen (1997) found that their SVJ model (jumps in 
returns, but not in volatility) systematically overpriced OTM calls. So our 
analysis suggests that adding jumps in volatility may attenuate the overpricing in 
the SVJ model, at least for options that are not too far out of the money. The 
addition of a jump in volatility actually exacerbates the over pricing for far-out- 
of-the-money calls. 

Model SVJ-Y-V is one illustrative formulation of a model with jumps in both 
Y and V. Figure 5 shows that the addition of a jump in V to the SVJ model also 
attenuates the over-pricing of OTM calls. Whether our parameterization of the 
jump distributions is enough to resolve the empirical puzzles relative to the SVJ 
model is an empirical issue that warrants further investigation. 

Finally, Figure 6 shows that, in the presence of simultaneous jumps, the levels 
of implied volatilities for OTM calls depend on the sign and magnitudes of the 
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FIGURE 3. 'Smile curves" implied by S&P 500 Index options with 318 days to expiration. 
"Stars" show observed implied volatility of November 2, 1993. SV is the Stochastic Volatility Model, 
SVJ-Y is the Stochastic Volatility Model with Jumps in Returns, and SVJJ is the Stochastic 
Volatility Model with Simultaneous and Correlated Jumps in Returns and Volatility. Model 
parameters were calibrated with options data of November 2, 1993. 

correlation between the jump amplitudes. From our calibration of the SVJJ 
model, the data suggest that pJ is negative (see Table I). Thus, for this day, 
simultaneous jumps tend to reduce the Black-Scholes implied volatilities of 
OTM calls compared to the model with simultaneous jumps with uncorrelated 
amplitudes. 

4.3. Multi-factor Volatility Specifications 

Though our focus in this section has been on jump distributions, we are also 
interested in multi-factor models of the diffusion component of stochastic 
volatility. Bates (1997) has emphasized the potential importance of more than 
one volatility factor for explaining the "term structure" of return volatilities, and 
included two, independent volatility factors in his model. Similarly, the empirical 
analysis in Gallant, Hsu, and Tauchen (1999) of a non-affine, 3-factor model of 
asset returns, with two of the three state coordinates dedicated to volatility 
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FIGURE 4.-30-day smile curve, varying volatility jumpiness, and no jumps in returns. 

behavior, suggests that more than one volatility factor improves the goodness of 
fit for S&P 500 returns. 

Our transform analysis applies directly to any affine formulation of multi- 
factor stochastic volatility models, including Bates' model. Here, we also propose 
an examination of multi-factor volatility models in which there is a "long-term" 
stochastic trend component V, in volatility. For example, we propose considera- 
tion of a three-factor model for X = (Y, V, j)T, given in its risk-neutral form by 

_1 

2 t 
(4 . 6) d V, = K ( -V, )) d t 

Vt/ K? O 

+ uTp VI / _p2 o t O dW,Q, 

O O To- VI vt 

where WQ is an (p7)-standard Brownian motion in 3 under Q. 
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FIGURE 5. 30-day smile curve, varying volatility jumpiness. Independent arrivals of jumps in 
returns and volatility, with independent jump sizes. 

A one-factor volatility model, such as the SV model, may well over-simplify 
the term structure of volatility. In particular, the SV model has an autocorrela- 
tion of returns (over successive periods of length A) of exp(- K,, A), which 
decreases exponentially with A. For the estimated values of K typically found in 
practice, the autocorrelations of discretely sampled V decay too quickly relative 
to what is found in the data. Bollerslev and Mikkelsen (1996) argue, based on 
their analysis of LEAPs, for a "long memory" model of volatility to capture this 
slow decay. The correlation of (V,, VJK,,) (with respect to the ergodic distribution 
of (V, V)) implied by model (4.6) is 

~~~~~~ ~~~~~KU'/( K- K0) corr(V, V ,I) = e 'I+ (e -4 -e-?/ ? 
(K?+ K0X T2/K + KOT /K0 

By suitable choice of the parameter values, this correlation decays more slowly 
with A than the exponential rate in the one-factor model. In a different context, 
Gallant, Hsu, and Tauchen (1999) found that the correlogram for V was well 
approximated, at least over moderate horizons, by their two-factor volatility 
model, and we conjecture that the same is true of models like (4.6). In 
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subsequent work, we plan to further investigate multi-factor volatility specifica- 
tions. 
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APPENDICES 

A. TECHNICAL CONDITIONS AND ARGUMENTS 

This Appendix contains technical results and conditions used in the body of the paper. 

LEMMA 1: Unlder thle asswtnlptionis of Propositioni 1, J is a mczar-tinzgale. 
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PROOF: Letting E, denote f,-conditional expectation under P, for 0 < t < s < T, we have 

E (l E (I(I) TT(it( )) =E, ( E E rE(Ti) - T(i)- XT(i)- ( M)) 

t< TMi<S t< T(i<s 

= E,( E 'TT(i,- (O(b(-r(i)))- 1)) 

1< T(i)?s 

=El ( f 
T 

T() PI (O ( b ( ) 1 dN ) 

=E( fT F (0(b(u0))- 1)dNA). 

Because {, - ((b(t)) - 1): t 2 0} is an (9)-predictable process, and the jump-counting process N 
has intensity {A(X,, t): t < T}, integrability condition (i) implies that25 

El f ((b(u)) - 1)dNA1) =E, (Jf,(0(b(u0))- 1)A(X,ui)di). 

Hence J is martingale. Q.E.D. 

Proposition 2 is proved as follows. 
For 0 << co, and a fixed yel R, 

1 T e qjx(a -ivb,x,0,T) -ee-MY'qx(a +ivb,x,O,T) 

2 qT J-T it) 

1 
e -it (z-Y) _ eiu(z- 

2Gr-T ft dGa,b(z; Xj,T,)du 
17 Tf it 

T e-iv(Z-y) _ eiul(z-y) 

- Gr JRI- T iV dvdG b(Z;x,T,x), 

where Fubini is applicable26 because 

lim Ga h(Y; x,T, X) = q(Jx(a,x,O,T) < oo, 
y-) + o 

given that X is well-behaved at (a, T). 
Next we note that, for 7 > 0, 

T e-iu(z-! ) - eiu(z-y) sgn(z -y) T sin(o J z -y I) 
f dv= f dv 

JT it) 7r JT | 

is bounded simultaneously in z and 7, for each fixed y.27 By the bounded convergence theorem, 

1 T eiUytfrx(a - iub, x,O, T) - e-i1YyX(a + ivb, x, 0, T) 
lim - . dv 

T co 27 J- T iv 

R -fsgn(z --y)dGi, b(z; x, T, X) 

= - x(a, x, 0, T) + (Ga, h(y; x, T, X) + G,,b(y - x, T, X)), 

25See, for example, page 27 of Bremaud (1981). We are applying the result for the real and 
imaginary components of the integrand, separately. 

26Here, we also use the fact that, for any u, v E lR, IeiU - eiuI < Iv - itl. 
27We define sgn (x) to be 1 if x > 0, 0 if x = 0, and -1 if x < 0. 
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where Go 1,(y -; x, T, X) = lim V Z_ <$ )Go(z; x, T, X). Using the integrability condition (2.11), by 
the dominated convergence theorem we have 

1X(a, x, O, T) 
G, b (y; xS, T, X)= '' 

e;,&)X(al - iL,b, X, 0, T) - e"!frX(a + ivb, x, 0, T) 

Because qfX(a - iub, x, 0, T) is the complex conjugate of t/ X(a + ivb, x, 0, T), we have (2.12). Q.E.D. 

Proposition 3, regarding the extended transform, relies on the following technical condition. For 

differentiability of 0 at it, it is enough that 0 is well defined and finite in a neiglhborhood of it. 

DEFINITION: (K, H, 1, 0, p) is "extended" well-behllved at (11, it, T), if (2.5)-(2.6) are solved uLniquely 

by 1 and a, if the jump transform 0 is differentiable at ,B(t) for all t < T, if (2.15) is solved uniquely 

by B and A, and if the following integrability conditions (i)-(iii) are satisfied, where P, = P(A(t) + 

B(t) X,): 
(i) E( I,jT I i' I dt) < cc, where y, A(X,)(P,(0( ,8(t)) - 1) + TV0( 13(t))B(t)). 

(ii) E[(JjOTt 4 tdt)"/2] < cc, where 71,= ( f3(t)T +B(t)c)o(X1). 
(iii) E(I lT j) < cc- 

B. MULTIPLE JUMP TYPES AND TIME DEPENDENCE 

We can relax the jump behavior of X to accommodate time dependencies in the coefficients and 

different types of jumps, each arriving with a different stochastic intensity. 

We redefine D to be a subset of BR" x [0, oc), and treat the state process X defined so that (X,, t) 

is in D for all t. It is assumed that, for each t, {x: (x, t) ci D} contains an open subset of R". The 

time-dependent generator is now defined by 

I~~~~~~~~ 
(B.1) 9f(x, t) = f,(x, t) + f(x, t) u(x, t) + - tr[f f(x, t)or(X, t)o((x, t)T] 

2 X 

+ LA(x,t)f [f(x +z,tf)-f(x,t)jdv1'(z), 
i '" 

for sufficiently regular f: D R-> . That is, jump type i has jump-conditional distribution v, at time t, 

depending only on t, and stochastic intensity fAi(X,, t): t > 0}, for i E(1 .. 7;1r, where Ai: D -> R+ 
is defined by Ai(x,t) = li(t) + li(t)-x, for ftunctions (10,l).(10',l7") on [0,oc) into R x B". The 

jump transforms 0 = (0 .. ., 0') are definecd by 0i(c, t) = JfR,nexp(c z)dv,'(z), c E C". We take 

pL(x, t) =KO(t) + K1(t)x, 

o ,t)o_(X,t)T HH1() k 
0(X(X )f(,t H()(t) + I H;)(t)Xk; 

k= I 

where for each t ? 0, KO(t) is ni X 1, Kl(t) is n x nt, H0(t) is n X n and symmetric, and H,(t) is a 

tensor28 of dimension n X n X nt, with symmetric H(k)(t) (for k = . ). The time-dependent 

coefficients K =(KO, K), H = (H(, H1), and = (1, 11) are assumed to be bounded continuous 

functions on [0, cc). 

In this more general setting, Propositions 1, 2, and 3 apply after introducinig these time-depen- 

dent coefficients into (2.5) and (2.6), and replacing the last terms in the right-hand sides of these 

ODEs with >i7-L 1(t)(0'(c, t) - 1) and 7_' 1/(t)(0'(c, t) - 1), respectively. 

28 Let H be an n X n X i tensor, fix its third index to k'1; the tensor is reduced to anl n X n matrix 

H(k) with elements, Hi0) - H(i, j, k). ij 
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We can further extend to the case of an iinfinite number of jump types by allowing for a general 
Levy jump measure that is affine in the state vector, as in the one-dimensional case treated by 
Kawazu and Watanabe (1971). (See Theorem 42, page 32, of Protter (1990).) 

C. CHANGE OF MEASURE 

This appendix provides the impact of a change of measure defined by a density process or a 
state-price-density process that is of the exponential-affine form in an affine jump-diffusion state 
process X. 

Fixing T> 0, suppose, under the measure P, that a given characteristic X= (K, H, 1, 0, p) is 
well-behaved at (b, T) for some b E R". Let 

(C.1) g:, = exp(f 
R(X,, 

s)ds)exp(a(t,T,b) + (t,T,b)X,). 

Under the conditions of Proposition 1, g is a positive martingale. We may then define an equivalent 
probability measure Q by dQ/dP= (T/lo In this section, we show how to compute the transform 
of X after a change of measure with density process 6. Many other densities could be considered, as 
in Biihlmann, Delbaen, Embrechts, and Shiryaev (1996). We have chosen this density as it preserves 
the affine behavior of X under the change of measure, and because it arises naturally when 
renormalizing prices by the price of a zero-coupon bond maturing on a particular date. (This is 
sometimes called "forward measure.") A more general way to choose an equivalent measure Q` that 
would suffice for our purposes would have 

(C.2) d k exp(t Ri(X,,s)ds exp(bi X(ti)), 

where, for each i {1. ni}, R1(x, t) is affine in x, ti is a fixed time, and bi E R"; and where 
k E (0,cc) is a normalizing scalar chosen so that E(dQ*/dP) = 1. 

PROPOSITION 5 (Transform under Change of Measure): Let X(Q) = (K, HC, IQ, OQ) be defined 
by 

(C.3) Kg)(t)= K0(t) + H0(t),f(t, T, b), KfC(t)= K1(t) + H1(t)/3(t, T, b), 

(C.4) 1?'(t)= lo(t) f( ,8(t, T, b), t), 1?(t) = 1(t)0( ,8(t, T, b), t), 

(C.5) OQ(c, t) =O(c + ,8(t, T, b), t)/1( ,8(t, T, b), t), HQ(t)=H(t), 

wheere H1(t)b(t) deniotes the n X n matrix with kth collumn H()(t)b(t). Let RQ(x, t) pQ(t) + pQ(t) .x, 

for somie bolunided mi-reaslurable p Q: [0,cc) R a zd pQ: [0,) R ". Let pQ - (-, p Q) be such that 
X(Q) is well-behaved at some (it, T). Thienz, for t < T, 

(C.6) E(C ep( to TR(X,, s)dlsexp(it X).}= x(C))(tt X, t T), 

wher-e f ,x( Q) is defined by (2.4). 

PROOF: Let 

(C.7) W, W, - 
f,to-(X s)-l- :(s, T, b)ds, t >O. 

0 

Lemma 2, below, shows that WQ is a P-local martingale. It follows that WQ is a Q-martingale. 
Because jf T (X,, s),8(s, T, b)ds is a continuous finite-variation process, [WiQ JQ],WjQ1 = [ jP] = 
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8(i,j)t, where 8( ) is the Kronecker delta. By Levy's Theorem, WQ is a standard Brownian motion 
in R" uLnder Q. 

Next, we let 

(C.8) M,-'2 = N,- fto( f3(s,T,b))A(X.,s)dls, t ?O. 

Lemma 3, below, shows that (MC is a P-local martingale. It follows that MQ is a Q-local 
martingale. By the martingale characterization of intensity,29 we conclude that, under Q, N is a 
counting process with the intensity {AQ(X,, t): t 2 0} defined by AQ(x, t) = IQ(t) + l?(t) -x. 

Using the fact that, under Q, WQ is a standard Brownian and the jump counting process N has 
intensity {AQ(X,, t): t 2 0}, we may mimic the proof of Proposition 1, and obtain (C.6), replacing in 
the proof of Lemma 1 EI(L1 < T(i) < T( T(i) - 1T(i)-)) with 

EIQ( PT ( T /(I (0 T(i) T(i)- )) 

t < T(i) < T ' I< Tr(i) < T 

This completes the proof. Q.E.D. 

LEMMA 2: Undcler the assimniptionis of Proposition 1, g WQ is a P-local martingale. 

PROOF: By Ito's Formula, with 0 < s < t < T, 

WI = gtWSQ + f 
t dWQ) + f 

t WQ dK6, 

+ E ( - _ )(W,?-)W,Q ) + hftd[ 6 WQ]I 

=sW5Q + f 6_ (dW,, - a T (X, i)b(ut)dit) 
s 

+ ft WJ4Qd + f t(1( T (X, li)b(uG)d-ulZ 
s S 

=-(xWsQ + ft %dWJ, + f tW Qid i,, 
S S 

where [ , WQ c denotes the continuous part of the "square-brackets" process , W Q]. As W and ( 

are P-martingales, both {ff'f AW dJ,: t 2 0} and {IfJWIQd : t ? 0} are P-local martingales. Hence, 
W Q is a P-local martingale. Q. E. D. 

LEMMA 3: Unider the assumniptiotns of Propositioni 1, (MQ is al P-local mnartingale. 

PROOF: By Ito's Formula, with 0 < s < t < T, 

M) = s ms _ + + ftMQLd$ + - )(N -Nl_ ) 
s s S<11<t 

= (s + fA I dM + ftMQ) d + J, 

where M, = - fJ A(Xs, s)ds, and where 

L, (V - )<- ft ( O( 13(u T, b), i) -1)A(X, u)du. 
.s<u?t s 

29See, for example, page 28 of Bremaud (1981). 
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As M and 6 are P-martingales, {IJf` 
1dM,,: 

t > O} and {ff'M$Q d : t > 0 are P-local martingales. By 
a proof similar to that of Lemma 1, and using the Integration Theorem (y) in Bremaud (1981), we 
can show that J' is a P-local martingale. Q.E.D. 

For the remainder of this appendix, we denote Q by Q(b), emphasizing the role of b in defining 
the change of probability measure given by (C.1). We let x(b) = (KQ(h'), HQ(b), IQ(b), OQ(b), p) 
denote the associated characteristic. The previous result shows in effect that, under Q(b), the state 
vector X is still an affine jump-diffusion whose characteristics can be computed in terms of the 
characteristics of X under the measure P. This result provides us with an alternative approach to 
option pricing. We suppose that Q(O) is an equivalent martingale measure. The price F(XO, a, d, c, T) 
of an option paying (ea+ +XT - c)+ at T is given by 

(X(, a,d,c, T)=EQ(O)(exp( - JR(Xs, s)ds)(ea+'XT- c) ) 

=ea EQ()( exp - fR(TX,, s)ds) ed'XT1d'XT > 1)-(C ) 

- cEQ(O) (exp -T R( X, s)ds) 'dXT> Inc) ) 
Provided the characteristic (K, H, 1, 0, p) is well-belhaved at (d, T) and (0, T), we may introduce the 
equivalent probability measure Q(d), and write 

F(X0, a, d,c,T) = eaexp(a(O, T, d) + 13(0,T,d) Xo)EQ(d)(ld.XT, ln(c)-a) 

- c exp ( a (O, T, O) + 3 (0, T, O) XO ) EQ(0)( 11,XT? ln(c)- a) 

Let x(1) - (K Ht jQt"),0Q((),0) and X(O)=(KQ()- HQ(), IQ(O) OQ(O) O) be defined by 
(C.3)-(C.5) for b = d and b = 0. We suppose that x(1) and X(O) are well behaved at (ilvd, T) for any 
v z R. Then 

Et)t?(tl >In()_ =1 +1 twIm[ 
t x(l)( it'd, x, 0), T)e-'l(Il(c)- c)] 

EQ(a`)(1d-X.,? In(c)-a) = +dv 

1 1 Im[ Ax(O)(it,d,x,0,T)e-it,(I(c)- a)] 
EQt(O)(l d.XT ~tIn(c)- a) = -+ - dv, 

provided JR I f x(I1)(ivd, Xo, 0, T) I dv <0o and fR I ft x(')(ivd, Xo, 0, T) I dv oo. These quantities may 
now be substituted into the previous relation in order to obtain the option price. 

D. CAP PRICING 

A cap is a loan with face value, say 1, at a variable interest rate that is capped at some level T. At 
time t, let T, 2T,..., IT be the fixed dates for future interest payments. At each fixed date kT, the 

i'-capped interest payment, or "caplet," is given by T(a.((k -1)T, kT) - )+, where ((k- 1)T, kT) is 
the T-year floating interest rate at time (k -I)T, definied by 

I 

I + _____(k - _T_ KT) 
= A((k - 1)T, kT). 

The market value at time 0 of the caplet paying at date kT can be expressed as 

Caplet(k) =EQ[exp(-TR(X, t)di) T(M((k - 1)T, kT)- ] 

=(1+ rl)E-['exp(-'k )rR(X,, I1)dd)i( 1 T A((k-1)r, k) 
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Hence, the pricing of the kth caplet is equivalent to the pricing of an in-(k - 1)T-for-T put struck at 
1/(1 + Tr'), which can be readily obtained by using Proposition 3 and put-call parity as Caplet(k) 
(1 + Tr)C(k), where 

Cfk =r( O v3,1 ,(k )T A0Ik A) 
O k - 

1,T 

k l + T r) 
l+Tr~X(T C) where F(XO, a, d, c, T) is the price of a claim to (e'+'? X(T) - c)+ paid at T, and where a- = a((k - 

1)T, kT, 0) and ,B = ,((k - 1)T, kT, 0). 
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